首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that short-term variation in airway caliber could be quantified by frequency distributions of respiratory impedance (Zrs) measured at high frequency. We measured Zrs at 6 Hz by forced oscillations during quiet breathing for 15 min in 10 seated asthmatic patients and 6 normal subjects in upright and supine positions before and after methacholine (MCh). We plotted frequency distributions of Zrs and calculated means, skewness, kurtosis, and significance of differences between normal and log-normal frequency distributions. The data were close to, but usually significantly different from, a log-normal frequency distribution. Mean lnZrs in upright and supine positions was significantly less in normal subjects than in asthmatic patients, but not after MCh and MCh in the supine position. The lnZrs SD (a measure of variation), in the upright position and after MCh was significantly less in normal subjects than in asthmatic patients, but not in normal subjects in the supine position and after MCh in the supine position. We conclude that 1) the configuration of the normal tracheobronchial tree is continuously changing and that this change is exaggerated in asthma, 2) in normal lungs, control of airway caliber is homeokinetic, maintaining variation within acceptable limits, 3) normal airway smooth muscle (ASM) when activated and unloaded closely mimics asthmatic ASM, 4) in asthma, generalized airway narrowing results primarily from ASM activation, whereas ASM unloading by increasing shortening velocity allows faster caliber fluctuations, 5) activation moves ASM farther from thermodynamic equilibrium, and 6) asthma may be a low-entropy disease exhibiting not only generalized airway narrowing but also an increased appearance of statistically unlikely airway configurations.  相似文献   

2.
The mechanisms by which deep inspiration (DI) avoidance increases airway responsiveness in healthy subjects are not known. DI avoidance does not alter respiratory mechanics directly; however, computational modeling has predicted that DI avoidance would increase baseline ventilation heterogeneity. The aim was to determine if DI avoidance increased baseline ventilation heterogeneity and whether this correlated with the increase in airway responsiveness. Twelve healthy subjects had ventilation heterogeneity measured by multiple-breath nitrogen washout (MBNW) before and after 20 min of DI avoidance. This was followed by another 20-min period of DI avoidance before the inhalation of a single methacholine dose. The protocol was repeated on a separate day with the addition of five DIs at the end of each of the two periods of DI avoidance. Baseline ventilation heterogeneity in convection-dependent and diffusion-convection-dependent airways was calculated from MBNW. The response to methacholine was measured by the percent fall in forced expiratory volume in 1 s/forced vital capacity (FVC) (airway narrowing) and percent fall in FVC (airway closure). DI avoidance increased baseline diffusion-convection-dependent airways (P = 0.02) but did not affect convection-dependent airways (P = 0.9). DI avoidance increased both airway closure (P = 0.002) and airway narrowing (P = 0.02) during bronchial challenge. The increase in diffusion-convection-dependent airways due to DI avoidance did not correlate with the increase in either airway narrowing (r(s) = 0.14) or airway closure (r(s) = 0.12). These findings suggest that DI avoidance increases diffusion-convection-dependent ventilation heterogeneity that is not associated with the increase in airway responsiveness. We speculate that DI avoidance reduces surfactant release, which increases peripheral ventilation heterogeneity and also predisposes to peripheral airway closure.  相似文献   

3.
The lumped six-element model of the respiratory system proposed by DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956) has often been used to analyze respiratory system impedance (Zrs) data. This model predicts a resonance (relative minimum in Zrs) at fr between 6 and 10 Hz and an antiresonance (relative maximum in Zrs) at far at higher frequencies (greater than 64 Hz). The far is due to the lumped tissue inertance (Iti) and the alveolar gas compression compliance (Cg). An fr and far have been recently reported in humans, but the far was shown to be not related to Iti and Cg, but instead it is the first acoustic antiresonance of the airways due to their axial dimensions). Zrs data to frequencies high enough to include the far have not been reported in dogs. In this study, we measured Zrs in dogs for frequencies between 5 and 320 Hz and found an fr at 7.5 +/- 1.6 Hz and two far at 97 +/- 13 and 231 +/- 27 Hz (far,1 and far,2, respectively). When breathing 80% He-20% O2, the fr shifted to 14 +/- 2 Hz, far,1 did not change (98 +/- 9 Hz), and far,2 increased to greater than 320 Hz. The behavior of fr and far,1 is consistent with the structure-function implied by the six-element model. However, the presence of an far,2 is not consistent with this model, because it is the airway acoustic antiresonance not represented in the model. These results indicate that, for frequencies that include the fr and far,1, the six-element model can be used to analyze Zrs data and reliable estimates of the model's parameters can be extracted by fitting the model to the data. However, more complex models must be used to analyze Zrs data that include far,2.  相似文献   

4.
Lung mechanics and airway responsiveness to methacholine (MCh) were studied in seven volunteers before and after a 20-min intravenous infusion of saline. Data were compared with those of a time point-matched control study. The following parameters were measured: 1-s forced expiratory volume, forced vital capacity, flows at 40% of control forced vital capacity on maximal (Vm(40)) and partial (Vp(40)) forced expiratory maneuvers, lung volumes, lung elastic recoil, lung resistance (Rl), dynamic elastance (Edyn), and within-breath resistance of respiratory system (Rrs). Rl and Edyn were measured during tidal breathing before and for 2 min after a deep inhalation and also at different lung volumes above and below functional residual capacity. Rrs was measured at functional residual capacity and at total lung capacity. Before MCh, saline infusion caused significant decrements of forced expiratory volume in 1 s, Vm(40), and Vp(40), but insignificantly affected lung volumes, elastic recoil, Rl, Edyn, and Rrs at any lung volume. Furthermore, saline infusion was associated with an increased response to MCh, which was not associated with significant changes in the ratio of Vm(40) to Vp(40). In conclusion, mild airflow obstruction and enhanced airway responsiveness were observed after saline, but this was not apparently due to altered elastic properties of the lung or inability of the airways to dilate with deep inhalation. It is speculated that it was likely the result of airway wall edema encroaching on the bronchial lumen.  相似文献   

5.
Mechanical parameters of the respiratory system are often estimated from respiratory impedances using lumped-element inverse models. One such six-element model is composed of an airway branch [with a resistance (Raw) and inertance (Iaw)] separated from a tissue branch [with a resistance (Rt), inertance (It), and compliance (Ct)] by a shunt compliance representing alveolar gas compression (Cg). Even though the airways are known to have frequency-dependent resistance and inertance, these inverse models have been composed of linear frequency-independent elements. In this study we investigated the use of inverse models where the airway branch was represented by a frequency-independent Raw and Iaw, a Raw that is linearly related to frequency and an Iaw that is independent of frequency, and a system of identical parallel tubes the impedance of which was computed from the tube radius and length. These inverse models were used to analyze airway and respiratory impedances between 2 and 1,024 Hz that were predicted from an anatomically detailed forward model. The forward model represented the airways by an asymmetrically branched network with a terminal impedance representative of known Cg, Rt, It, and Ct. For respiratory impedances between 2 and 128 Hz, all models fit the data reasonably well, and reasonably accurate estimates of Cg, Rt, It, and Ct were extracted from these data. For data above 200 Hz, however, only the multiple-tube model accurately fitted respiratory impedances (Zrs). This model fitted the Zrs data best when composed of 27 tubes, each having a radius of 0.148 cm and a length of 16.5 cm.  相似文献   

6.
The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.  相似文献   

7.
We delivered controlled radio frequency energy to the airways of anesthetized, ventilated dogs to examine the effect of this treatment on reducing airway narrowing caused by a known airway constrictor. The airways of 11 dogs were treated with a specially designed bronchial catheter in three of four lung regions. Treatments in each of the three treated lung regions were controlled to a different temperature (55, 65, and 75 degrees C); the untreated lung region served as a control. We measured airway responsiveness to local methacholine chloride (MCh) challenge before and after treatment and examined posttreatment histology to 3 yr. Treatments controlled to 65 degrees C as well as 75 degrees C persistently and significantly reduced airway responsiveness to local MCh challenge (P < or = 0.022). Airway responsiveness (mean percent decrease in airway diameter after MCh challenge) averaged from 6 mo to 3 yr posttreatment was 79 +/- 2.2% in control airways vs. 39 +/- 2.6% (P < or = 0.001) for airways treated at 65 degrees C, and 26 +/- 2.7% (P < or = 0.001) for airways treated at 75 degrees C. Treatment effects were confined to the airway wall and the immediate peribronchial region on histological examination. Airway responsiveness to local MCh challenge was inversely correlated to the extent of altered airway smooth muscle observed in histology (r = -0.54, P < 0.001). We conclude that the temperature-controlled application of radio frequency energy to the airways can reduce airway responsiveness to MCh for at least 3 yr in dogs by reducing airway smooth muscle contractility.  相似文献   

8.
Recent studies on respiratory impedance (Zrs) have predicted that at frequencies greater than 64 Hz a second resonance will occur. Furthermore, if one intends to fit a model more complicated than the simple series combination of a resistance, inertance, and compliance to Zrs data, the only way to ensure statistically reliable parameter estimates is to include data surrounding this second resonance. An additional question, however, is whether the resulting parameters are physiologically meaningful. We obtained input impedance data from eight healthy adult humans using discrete frequency forced oscillations from 4 to 200 Hz. Three resonant frequencies were seen: 8 +/- 2, 151 +/- 10, and 182 +/- 16 Hz. A seven-parameter lumped element model provided an excellent fit to the data in all subjects. This model consists of an airway resistance (Raw), which is linearly dependent on frequency, and airway inertance separated from a tissue resistance, inertance, and compliance by a shunt compliance (Cg) thought to represent gas compressibility. Model estimates of Raw and Cg were compared with those suggested by measurement of Raw and thoracic gas volume using a plethysmograph. In all subjects the model Raw and Cg were significantly lower than and not correlated with the corresponding plethysmographic measurement. We hypothesize that the statistically reliable but physiologically inconsistent parameters are a consequence of the distorting influence of airway wall compliance and/or airway quarter-wave resonance. Such factors are not inherent to the seven-parameter model.  相似文献   

9.
Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.  相似文献   

10.
We studied the effect of resting smooth muscle length on the contractile response of the major resistance airways (generations 0-5) in 18 mongrel dogs in vivo using tantalum bronchography. Dose-response curves to 10(-10) to 10(-7) mol/kg methacholine (MCh) were generated [at functional residual capacity (FRC)] by repeated intravenous bolus administration using tantalum bronchography after each dose. Airway constriction varied substantially with dose-equivalent stimulation and varied sequentially from trachea (8.8 +/- 2.2% change in airway diam) to fifth-generation bronchus (49.8 +/- 3.0%; P less than 0.001). Length-tension curves were generated for each airway to determine the airway diameter (i.e., resting in situ smooth muscle length) at which maximal constriction was elicited using bolus intravenous injection of 10(-8) mol/kg MCh. A Frank-Starling relationship was obtained for each airway; the transpulmonary pressure at which maximal constriction was elicited increased progressively from 2.50 +/- 1.12 cmH2O for trachea (approximately FRC) to 18.3 +/- 1.05 cmH2O for fifth-generation airways (approximately 50% TLC) (P less than 0.001). A similar relationship was obtained when change in airway diameter was plotted as a function of airway radius. We demonstrate substantial heterogeneity in the lung volumes at which maximal constriction is elicited and in distribution of parasympathomimetic constriction within the first few generations of resistance bronchi. Our data also suggest that lung hyperinflation may lead to augmented airway contractile responses by shifting resting smooth muscle length toward optimum resting smooth muscle length.  相似文献   

11.
12.
The effect of deep inspiration (DI) on airway responsiveness differs in asthmatic and normal human subjects. The mechanism for the effects of DI on airway responsiveness in vivo has not been identified. To elucidate potential mechanisms, we compared the effects of DI imposed before or during induced bronchoconstriction on the airway response to methacholine (MCh) in rabbits. The changes in airway resistance in response to intravenous MCh were continuously monitored. DI depressed the maximum response to MCh when imposed before or during the MCh challenge; however, the inhibitory effect of DI was greater when imposed during bronchoconstriction. Because immature rabbits have greater airway reactivity than mature rabbits, we compared the effects of DI on their airway responses. No differences were observed. Our results suggest that the mechanisms by which DI inhibits airway responsiveness do not depend on prior activation of airway smooth muscle (ASM). These results are consistent with the possibility that reorganization of the contractile apparatus caused by stretch of ASM during DI contributes to depression of the airway response.  相似文献   

13.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

14.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

15.
A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946-1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.  相似文献   

16.
We determined the dose-response curves to inhaled methacholine (MCh) in 16 asthmatic and 8 healthy subjects with prohibition of deep inhalations (DIs) and with 5 DIs taken after each MCh dose. Flow was measured on partial expiratory flow-volume curves at an absolute lung volume (plethysmographically determined) equal to 25% of control forced vital capacity (FVC). Airway inflammation was assessed in asthmatic subjects by analysis of induced sputum. Even when DIs were prohibited, the dose of MCh causing a 50% decrease in forced partial flow at 25% of control FVC (PD(50)MCh) was lower in asthmatic than in healthy subjects (P < 0.0001). In healthy but not in asthmatic subjects, repeated DIs significantly decreased the maximum response to MCh [from 90 +/- 4 to 62 +/- 8 (SD) % of control, P < 0.001], increased PD(50)MCh (P < 0.005), without affecting the dose causing 50% of maximal response. In asthmatic subjects, neither PD(50)MCh when DIs were prohibited nor changes in PD(50)MCh induced by DIs were significantly correlated with inflammatory cell numbers or percentages in sputum. We conclude that 1) even when DIs are prohibited, the responsiveness to MCh is greater in asthmatic than in healthy subjects; 2) repeated DIs reduce airway responsiveness in healthy but not in asthmatic subjects; and 3) neither airway hyperresponsiveness nor the inability of DIs to relax constricted airways in asthmatic subjects is related to the presence of inflammatory cells in the airways.  相似文献   

17.

Background

Pulmonary edema induces changes in airway and lung tissues mechanical properties that can be measured by low-frequency forced oscillation technique (FOT). It is preceded by interstitial edema which is characterized by the accumulation of extravascular fluid in the interstitial space of the air-blood barrier. Our aim was to investigate the impact of the early stages of the development of interstitial edema on the mechanical properties of the respiratory system.

Methods

We studied 17 paralysed and mechanically ventilated closed-chest rats (325–375 g). Total input respiratory system impedance (Zrs) was derived from tracheal flow and pressure signals by applying forced oscillations with frequency components from 0.16 to 18.44 Hz distributed in two forcing signals. In 8 animals interstitial lung edema was induced by intravenous infusion of saline solution (0.75 ml/kg/min) for 4 hours; 9 control animals were studied with the same protocol but without infusion. Zrs was measured at the beginning and every 15 min until the end of the experiment.

Results

In the treated group the lung wet-to-dry weight ratio increased from 4.3 ± 0.72 to 5.23 ± 0.59, with no histological signs of alveolar flooding. Resistance (Rrs) increased in both groups over time, but to a greater extent in the treated group. Reactance (Xrs) did not change in the control group, while it decreased significantly at all frequencies but one in the treated. Significant changes in Rrs and Xrs were observed starting after ~135 min from the beginning of the infusion. By applying a constant phase model to partition airways and tissue mechanical properties, we observed a mild increase in airways resistance in both groups. A greater and significant increase in tissue damping (from 603.5 ± 100.3 to 714.5 ± 81.9 cmH2O/L) and elastance (from 4160.2 ± 462.6 to 5018.2 ± 622.5 cmH2O/L) was found only in the treated group.

Conclusion

These results suggest that interstitial edema has a small but significant impact on the mechanical features of lung tissues and that these changes begin at very early stages, before the beginning of accumulation of extravascular fluid into the alveoli.  相似文献   

18.
For studiesinvestigating the mechanisms underlying the development of allergicconditions such as asthma, noninvasive methodologies for separatingairway and parenchymal mechanics in animal models are required. Todevelop such a method, seven Brown Norway rats were studied on threeoccasions over a 14-day period. After the baseline measurements, on thethird day inhaled methacholine was administered. Once lung functionreturned to the baseline level, a thoracotomy was performed to comparethe lung mechanics in the intact- and open-chest conditions. On eachoccasion, the rats were anesthetized, paralyzed, and intubated.Small-amplitude oscillations between 0.5 and 21 Hz were applied througha wave tube to obtain respiratory impedance (Zrs). Esophageal pressurewas measured to separate Zrs into pulmonary(ZL) and chest wall (Zw)components. A model containing a frequency-independent resistance andinertance and a tissue component, including tissue damping andelastance, was fitted to Zrs,ZL, and Zw spectra. Measurementsof Zrs, ZL, or Zw and the modelparameters calculated from them did not differ among tests. The numberof animals required to show group changes in lung mechanics wassignificantly lower when animals were measured noninvasively than whenthe group changes were calculated from open-chestmeasurements. In conclusion, the method reported in thisstudy can be used to separate airway and lung tissue mechanics noninvasively over a series of tests and can detect pulmonary constrictor responses for the airways and the parenchyma separately.

  相似文献   

19.
In healthy individuals, deep inspirations (DIs) have a potent bronchodilatory ability against methacholine (MCh)-induced bronchoconstriction. This is variably attenuated in asthma. We hypothesized that inability to bronchodilate with DIs is related to reduced airway distensibility. We examined the relationship between DI-induced bronchodilation and airway distensibility in 15 asthmatic individuals with a wide range of baseline lung function [forced expired volume in 1 s (FEV(1)) = 60-99% predicted]. After abstaining from DIs for 20 min, subjects received a single-dose MCh challenge and then asked to perform DIs. The effectiveness of DIs was assessed by the ability of the subjects to improve FEV(1). The same subjects were studied by two sets of high-resolution CT scans, one at functional residual capacity (FRC) and one at total lung capacity (TLC). In each subject, the areas of 21-41 airways (0.8-6.8 mm diameter at FRC) were matched and measured, and airway distensibility (increase in airway diameter from FRC to TLC) was calculated. The bronchodilatory ability of DIs was significantly lower in individuals with FEV(1) <75% predicted than in those with FEV(1) ≥75% predicted (15 ± 11% vs. 46 ± 9%, P = 0.04) and strongly correlated with airway distensibility (r = 0.57, P = 0.03), but also with residual volume (RV)/TLC (r = -0.63, P = 0.01). In multiple regression, only RV/TLC was a significant determinant of DI-induced bronchodilation. These relationships were lost when the airways were examined after maximal bronchodilation with albuterol. Our data indicate that the loss of the bronchodilatory effect of DI in asthma is related to the ability to distend the airways with lung inflation, which is, in turn, related to the extent of air trapping and airway smooth muscle tone. These relationships only exist in the presence of airway tone, indicating that structural changes in the conducting airways visualized by high-resolution CT do not play a pivotal role.  相似文献   

20.
Airway dysfunction in asthma is characterized by hyperresponsiveness, heterogeneously narrowed airways, and closure of airways. To test the hypothesis that airway constriction in ovalbumin (OVA)-sensitized OVA-intranasally challenged (OVA/OVA) mice produces mechanical responses that are similar to those reported in asthmatic subjects, respiratory system resistance (Rrs) and elastance (Edyn,rs) spectra were obtained in OVA/OVA and control mice during intravenous methacholine (MCh) infusions. In control mice, MCh at 1,700 microg x kg(-1) x min(-1) produced 1) a 495 and 928% increase of Rrs at 0.5 Hz and 19.75 Hz, respectively, 2) a 33% rise in Edyn,rs at 0.5 Hz, and 3) a mild frequency (f)-dependent increase of Edyn,rs. The same MCh dose in OVA/OVA mice produced 1) elevations of Rrs at 0.5 Hz and 19.75 Hz of 1,792 and 774%, respectively, 2) a 390% rise in Edyn,rs at 0.5 Hz, and 3) marked f-dependent increases of Edyn,rs. During constriction, the f dependence of mechanics in control mice was consistent with homogeneous airway narrowing; however, in OVA/OVA mice, f dependence was characteristic of heterogeneously narrowed airways, closure of airways, and airway shunting. These mechanisms amplify the pulmonary mechanical responses to constrictor stimuli at physiological breathing rates and have important roles in the pathophysiology of human asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号