首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.  相似文献   

2.
Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90% of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30°C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2% were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxie and galactose utilization problems must be considered.  相似文献   

3.
A novel class of chiral peptide nucleic acids has been synthesized in which the sugar-phosphate backbone of DNA has been replaced with the glycyl-proline backbone of both the - and the -configurations, nucleobases being attached through the 4-position of proline withcis- andtrans-stereochemistry. TheT10homopolymers withcis-stereochemistry in the - and -series bind strongly to poly(dA) withTmvalues of 69 and 70°C, respectively. They bind more strongly to poly(rA) withTmvalues of 73 and 72°C, respectively, and with apparent 1:1 stoichiometry. Using a mixed sequence decamer it was found that the thermal stability of the chiral peptide nucleic acid/oligonucleotide complex was comparable to that formed by Nielsen's polyamide nucleic acid.  相似文献   

4.
Alcohol yields of 6.5% were obtained with Saccharomyces cerevisiae in lactasehydrolyzed acid whey permeate containing 30–35% total solids. Maximum alcohol yields obtained with Kluyveromyces fragilis were 4.5% in lactase-hydrolyzed acid whey permeate at a solids concentration of 20% and 3.7% in normal permeate at a solids concentration of 10%. Saccharomyces cerevisiae efficiently converted the glucose present in lactase-hydrolyzed whey permeates containing 5–30% total solids (2–13% glucose) to alcohol. However, the galactose, which comprised about half the available carbohydrate in lactase-hydrolyzed whey, was not utilized by S. cerevisiae, so that even though alcohol yields were higher when this organism was used, the process was wasteful in that a substantial proportion of the substrate was not fermented. For the process to become commercially feasible, an efficient means of rapidly converting both the galactose and glucose to alcohol must be found.  相似文献   

5.
The study of a heat-shock process for RNA reduction was carried out for different yeast strains. Different results were obtained from each of them. Candida utilis NRRL Y-660 shows its best performance after a 8-s. heat-shock in the presence of 3% NaCl. For commercial baker's yeast Saccharomyces cerevisiae and Kluyveromyces fragilis L-1930, similar results were obtained with only 1% of NaCl. The latter needed longer heat-shock periods. e.g. 15s. to give such an RNA reduction. Biomass recovery ranged from 60 to 75%, being higher for C. utilis and K. fragilis while excessive losses were observed in S. cerevisiae cells. No significant protein deterioration was obtained in the best performance samples. The aminoacid profile appears to be improved in comparison to the starting material in these strains after RNA reduction.  相似文献   

6.
The growth and glucose uptake of single cultures of the wine-related yeasts Kluyveromyces thermotolerans, Torulaspora delbrueckii, and Saccharomyces cerevisiae were investigated. The yeasts had different specific glucose uptake rates (q s) that depended on the residual glucose concentration and the oxygen availability. In mixed cultures, the q s values of the yeasts were not subject to any interaction effects over a wide range of glucose concentrations. Our results strongly indicate that the relative glucose uptake abilities of both non-Saccharomyces yeasts, i.e. the q s(non-Saccharomyces)/q s(S. cerevisiae) ratios, regulated their abilities to compete for space in mixed cultures with S. cerevisiae, which, in turn, regulated their early deaths. This hypothesis enabled us to explain why K. thermotolerans was less able than T. delbrueckii to coexist with S. cerevisiae in mixed cultures. Furthermore, it enabled us to explain why oxygen increased the abilities of K. thermotolerans and T. delbrueckii to coexist with S. cerevisiae in the mixed cultures.  相似文献   

7.
Saccharomyces cerevisiae, grown aerobically or anaerobically under conditions which induce a requirement for a sterol and an unsaturated fatty acid, synthesized approximately the same amounts of neutral lipid and intracellular low-density vesicles, although the neutral lipids in aerobically-grown cells contained more esterified sterol and less triacylglycerol than those in anaerobically-grown cells. Kluyveromyces fragilis synthesized much less neutral lipid and a smaller quantity of low-density vesicles than S. cerevisiae whether grown at 30°C (generation time 1.1 h) or 20°C (generation time 2.1 h). Both yeasts synthesized highly saturated triacylglycerols, relatively unsaturated phospholipids, and esterified sterols with an intermediate degree of unsaturation irrespective of the conditions under which they were grown. Free sterols in the yeasts were rich in ergosterol and 22(24)-dehydroergosterol, while the esterified sterol fractions were richer in zymosterol.  相似文献   

8.
Ethanol production from lactose byKluyveromyces fragilis NRRL 665 in monoculture and coculture with strains ofZymomonas mobilis was studied. One of the strains,Z. mobilis NRRL 1960, when cocultured withK. fragilis, produed 55.2 g/l of ethanol, whereasK. fragilis in monoculture procuded only 36 g/l ethanol from 200 g/l lactose medium. Increased Qp (g ethanol produced/g biomass/h) and Qs (g substrate consumed/g biomass/h) were observed in coculture than in monoculture. However, the residual sugar concentration increased in coculture; this increase might be due to the slow utilization rate of galactose.  相似文献   

9.
The lactic yeast Kluyveromyces marxianus var.marxianus (formerly K. fragilis) autolyzates at faster rate than Saccharomyces cerevisiae. During K. marxianus autolysis, quite similar release kinetics were observed for intracellular space markers (potassium ions, nucleotides), cell-wall components (polysaccharides, N-acetyl-D-Glucosamine) and non specific products (amino nitrogen). By Scanning Electronic Microscopy examination, no cell burst was observed, but a variation in cell shape (from ellipsoidal to cylindrical), as well as a 43% decrease in the internal volume were observed. The mechanism proposed for S. cerevisiae autolysis appeared also likely for K. marxianus.Abbreviations NacGlc N-acetyl-D-glucosamine - x total biomass (dry cellular weight) concentration  相似文献   

10.
1. A number of yeast species were examined for the presence of β-glucanases. Extracts obtained by cell disruption of Saccharomyces cerevisiae, Fabospora fragilis and Hansenula anomala hydrolysed laminarin and pustulan with the production of glucose. Enzymic activities were also detected in the culture fluids of F. fragilis and H. anomala grown aerobically in buffered mineral medium with glucose as the carbon source. 2. F. fragilis and H. anomala possessed approximately sevenfold higher β-(1→3)-glucanase activity than S. cerevisiae. 3. Intracellular exo-β-glucanase from baker's yeast was purified 344-fold from the dialysed cell extract. 4. Exo-β-glucanase from F. fragilis was purified 114-fold from the dialysed culture fluid and 423-fold from the dialysed intracellular extract. The purified extracellular and intracellular enzymes had similar properties and essentially the same specific activity, 79 enzyme units/mg. of protein. 5. Extracellular exo-β-glucanase of H. anomala was purified 600-fold. 6. The optimum pH of the enzymes from F. fragilis, S. cerevisiae and H. anomala was 5·5 in each case. Chromatographic evidence indicated that the three enzymes remove glucosyl units sequentially from laminarin as well as pustulan. 7. The ratio of activities towards laminarin and pustulan remained constant during purification of the exo-β-glucanase obtained from the three species, suggesting a single enzyme. Additional evidence for its unienzymic nature are: (i) the two activities were destroyed at exactly the same rate on heating of the purified enzyme from F. fragilis at three different temperatures; (ii) the competitive inhibitor glucono-δ-lactone gave the same value of Ki when tested with either substrate; (iii) quantitative application of the `mixed-substrate' method with the purified enzyme of S. cerevisiae gave data that were in excellent agreement with those calculated on the assumption of a single enzyme. 8. The purified exo-β-glucanases of the different species of yeast had different kinetic constants. The ratios of maximal velocities and Km values with laminarin and pustulan differed markedly. Comparison of Vmax. and Km values suggests that the rapid release of spores from asci in F. fragilis might be explained in terms of an enzyme with higher maximal velocity and higher affinity to the ascus wall than that present in baker's yeast. 9. The estimated molecular weights for exo-β-glucanases from F. fragilis, S. cerevisiae and H. anomala were 22000, 40000 and 30000 respectively.  相似文献   

11.
Four yeasts, Hansenula anomala, Kluyveromyces fragilis, Lodderomyces elongisporus and Saccharomyces cerevisiae, were cultured in two presporulation media at 30 ° C. Media consisted of yeast extract — peptone — acetate and yeast extract — peptone — dextrose broths. Except for K. fragilis, the test yeasts reached a high degree of sporulation when transferred to acetate- and ethanol-supplemented sporulation media. The percentage of S. cerevisiae cells forming asci was as high as 79% after 24 h incubation. H. anomala and L. elongisporus sporulated more rapidly in ethanol- compared to acetate-containing medium. Within test parameters, the concentration of acetate or ethanol, pH, and incubation temperature (25 ° C and 30 ° C) did not substantially influence the extent of sporulation.  相似文献   

12.
Summary Cell suspensions ofSacharomyces cerevisiae, Kloeckera apiculata andCandida stellata were autolyzed in phosphate buffer, pH 4.5, for up to 10 days. Cell dry weights decreased by 25–35% after 10 days. Based on initial cell dry weight, the soluble autolysate consisted of: carbohydrate (principally polysaccharide) 3–7%; organic acids 3–6%; protein 12–13%; free amino acids 8–12%; nucleic acid products 3–5%; and lipids 1–12%. The main organic acids in autolysates were propionic, succinic and acetic and the main amino acids were phenylalanine, glutamic acid, leucine, alanine and arginine. Approximately 85–90% of cellular RNA and 25–40% of cellular DNA were degraded during autolysis. Both neutral lipid and phospholipid components were degraded, with neutral lipids but not phospholipids being found in autolysates. Scanning and transmission electron micrographs showed retention of cell wall structure and shape during autolysis, but there was extensive intracellular disorganization withinS. cerevisiae andC. stellata. There were differences in the autolytic behavior ofK. apiculata compared withS. cerevisiae andC. stellata.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.  相似文献   

13.
Clinical samples obtained from 200 patients with intra-abdominal infections were investigated for the presence of anaerobic bacteria. The majority of samples were from patients with appendicitis (108, 54%) followed by peritoneal abscess/peritonitis (37, 18.5%). A total of 153 anaerobes were isolated from 83 culture positive specimens with an isolation rate of 1.8 per sample. Ninety (59%) yielded Bacteroides fragilis group and B. fragilis stricto sensu accounted for half of them. Other isolates were 36 (23.5%) Prevotella species and 15 (9.8%)Peptostreptococcus micros . The susceptibility of the 153 isolates against eight antibiotics was determined by the E-test. All the isolates were susceptible to metronidazole, MIC90s varying between 1–2 μg/mL. ThePrevotella spp., Peptostreptococcus spp., Fusobacterium spp. and Porphyromonas spp. were all susceptible to clindamycin (MIC90s=0.25–2 μg/mL respectively), imipenem (MIC90s=0.12–0.5μg/mL respectively) and meropenem (MIC90=0.25 μg/mL each). About 25% of the B. fragilis group were resistant to clindamycin with MIC more than 256 μg/mL. Piperacillin-tazobactam also exhibited excellent in vitro activity against all the isolates (MIC90=0.25 μg/mL).  相似文献   

14.
Summary The evolution of the cell and must contents of three short-chain fatty acids (C6, C8 and C10) and their ethyl esters during fermentations withSaccharomyces cerevisiae racescerevisiae, bayanus andcapensis were studied. The former is a fermentative yeast and the last two are flor film yeasts. The acid concentrations in the musts increased throughout the alcoholic fermentations, and maximum cell concentrations of the fatty acids were reached after 48 h of fermentation. Maximum ester concentrations in the cells were attained after 48–72 h of fermentation. In the musts, ethyl octanoate and ethyl decanoate reached a peak also at this point, and ethyl hexanoate after 10 days. After 134 days,S. cerevisiae racecapensis formed a thick flor film whileS. cerevisiae racebayanus developed a thin film andS. cerevisiae racecerevisiae formed no film. At this point, acid contents remained constant in the wines produced byS. cerevisiae racescerevisiae andbayanus, and decreased in those obtained with racecapensis. The ethyl ester contents tended to decrease with the exception of ethyl decanoate in the fermentations carried out byS. cerevisiae racescerevisiae andbayanus.  相似文献   

15.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

16.
Six different variations of the extraction procedure applied to yeast cells of Saccharomyces cerevisiae and Candida utilis to optimize the production of yeast extract and isolation of nucleic acids were compared. The autolysis of C. utilis at 50 to 52°C without adding chemical agents was found to be the best for the production of yeast extract. The most suitable procedures used for the extraction of nucleic acids were those which were carried out from C. utilis at pH 7.5 (92°C) and the other with 0.4 M NH4OH (40°C). Both these modifications yielded the highest amounts of polymer nucleic acids. Applying all procedures compared to S. cerevisiae an increased content of sterols (including Δ5.7-sterols, predominantly ergosterol) was detected.  相似文献   

17.
Kluyveromyces fragilis (CBS 397) is a nonhalophilic yeast which is capable of lactose utilization from whey permeate and high glycerol production under anaerobic growth conditions. However, the optimum yields of glycerol (11.6 mg/ml of whey permeate medium) obtained in this study occurred only in the presence of 1% Na2SO3 as a steering agent. The use of other concentrations of Na2SO3, as well as 5% NaCl and 1% ascorbic acid, had no or detrimental effects on cell growth, lactose utilization, and glycerol production. Glycerol yields were greater in cultures grown from a light inoculum of K. fragilis than in cultures in which a resuspended mass of cells was introduced into the medium. The results of this study suggest that this strain of K. fragilis may be useful commercially in the utilization of cheese whey lactose and the concomitant production of glycerol.  相似文献   

18.

This study examined the pretreatment, enzymatic saccharification, and fermentation of the red macroalgae Gracilaria verrucosa using adapted saccharomyces cerevisiae to galactose or NaCl for the increase of bioethanol yield. Pretreatment with thermal acid hydrolysis to obtain galactose was carried out with 11.7% (w/v) seaweed slurry and 373 mM H2SO4 at 121 °C for 59 min. Glucose was obtained from enzymatic hydrolysis. Enzymatic saccharification was performed with a mixture of 16 U/mL Celluclast 1.5L and Viscozyme L at 45 °C for 48 h. Ethanol fermentation in 11.7% (w/v) seaweed hydrolysate was carried out using Saccharomyces cerevisiae KCTC 1126 adapted or non-adapted to high concentrations of galactose or NaCl. When non-adapted S. cerevisiae KCTC 1126 was used, the ethanol productivity was 0.09 g/(Lh) with an ethanol yield of 0.25. Ethanol productivity of 0.16 and 0.19 g/(Lh) with ethanol yields of 0.43 and 0.48 was obtained using S. cerevisiae KCTC 1126 adapted to high concentrations of galactose and NaCl, respectively. Adaptation of S. cerevisiae KCTC 1126 to galactose or NaCl increased the ethanol yield via adaptive evolution of the yeast.

  相似文献   

19.
Thallium sulphate inhibited microbial growth, withBacillus megaterium KM, more sensitive to the metal thanSaccharomyces cerevisiae andEscherichia coli. Inhibition ofB. megaterium KM andS. cerevisiae, but not ofE. coli, was alleviated by increasing the potassium concentration of the medium; inhibition of respiration ofS. cerevisiae, but not ofE. coli, was similarly alleviated. Thallium was rapidly bound, presumably to cell surfaces, byS. cerevisiae andE. coli, and was progressively accumulated by energy-dependent transport systems (probably concerned primarily with potassium uptake) with both organisms. Thallium uptake kinetics suggested more than one transport system operated in yeast, possibly reflecting a multiplicity of potassium transport systems. ApparentK m andK i values for competitive inhibition of thallium uptake by potassium indicatedS. cerevisiae to have a higher affinity for thallium uptake than for potassium, whileE. coli had a transport system with a higher affinity for potassium than for thallium. The likely systems for thallium transport are discussed. A mutant ofE. coli with tenfold decreased sensitivity to thallium was isolated and apparently effected surface binding of thallium in amounts equivalent to the wild type organism, but showed no subsequent uptake and accumulation of the metal from buffer, even though it was able to accumulate potassium to normal intracellular concentrations during growth. Abbreviations: Metal are referred to by their recognised atomic symbols (e.g. TI = Thallium; K = potassium; Co = cobalt)  相似文献   

20.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号