首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New oral granules of amoxicillin and clavulanic acid in 8:1 ratio have recently been developed and approved to conduct clinical trial in China. To date, there has been no report studying the pharmacokinetic characteristics of amoxicillin and clavulanic acid in man. Therefore, it is urgent to investigate the pharmacokinetic properties of amoxicillin and clavulanic acid in man. The aim of the study was to assess the pharmacokinetic properties of amoxicillin and clavulanic acid in 8:1 with different dosage in healthy volunteers and provide support for this drug to obtain marketing authorization in China. A liquid chromatography-tandem mass spectrometry method for determining the concentration of amoxicillin and clavulanic acid in human plasma was developed and applied to this open-label, single- and multiple-dose Pharmacokinetics study. Subjects were randomized to receive a single dose of 1, 2, and 4 pouches of the test granulation of amoxicillin and clavulanic acid in 8:1 ratio (amoxicillin is 250 mg and clavulanic acid is 31.25 mg per pouch). In the single-dose phase, blood samples were collected before dosing and at 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 5, 8, 12, and 24 h after drug administration. In the multiple-dose phase, samples were obtained before drug administration on days 1, 2, 3, and 4 to determine the Cmin of amoxicillin and clavulanic acid. In the 4th day, samples were collected from 0.25 to 24 h after drug administration. Profiles of the concentration–time curves of amoxicillin and clavulanic acid were best fitted to two-compartment model. In this group of healthy Chinese subjects, the pharmacokinetics of amoxicillin fitted the linear dynamic feature at doses of 250,500 and 1,000 mg, and not obviously about clavulanic acid at doses of 31.25, 62.5, and 125 mg. The t 1/2 of single dose and multidoses were (1.45 ± 0.12) and (1.44 ± 0.26) h of amoxicillin and (1.24 ± 0.23) and (1.24 ± 0.17) of clavulanic acid, respectively; The AUC0–24 of single dose and multidoses were (27937.85 ± 4265.59) and (24569.80 ± 3663.63) ng h mL?1 of amoxicillin and (891.45 ± 194.30) and (679.61 ± 284.05) ng h mL?1 of clavulanic acid, respectively; The Cmax of single dose and multidoses were (8414.58 ± 1416.78) and (7929.17 ± 1291.54) ng mL?1 of amoxicillin and (349.00 ± 89.54) and (289.00 ± 67.36) ng h mL?1 of clavulanic acid, respectively. t 1/2, AUC0–24, and Cmax were similar after multiple-dose administration and after single-dose administration, suggesting that amoxicillin and clavulanic acid do not accumulate with multiple-dose administration of 500 and 62.5 mg, respectively.  相似文献   

2.
Sensitive and selective determination of valproic acid in plasma by high-performance liquid chromatography (HPLC) is usually achieved with pre-column derivatization. In the present work, the derivatization is omitted due to using a simple but highly selective plasma extraction procedure and an optimized chromatographic condition. Valproic acid and the internal standard octanoic acid were extracted from plasma samples with n-hexane under acidic condition followed by back-extraction into diluted triethylamine. Chromatography was performed on a CN column (250 x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-40 mM aqueous sodium dihydrogen phosphate (30:70, v/v), pH 3.5. Detection was made at 210 nm and analyses were run at a flow-rate of 1 ml/min. The method was specific and sensitive with a quantification limit of 1.25 microg/ml and a detection limit of 0.1 microg/ml in plasma. The mean absolute recovery for valproic acid using the present plasma extraction procedure was 75.8%. The intra- and inter-day coefficient of variation and percent error values of the assay method were all in acceptable range. Calibration curves were linear (r>0.999) from 1.25 to 320 microg/ml in plasma.  相似文献   

3.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue which is applicable to low concentrations of amoxicillin (<1 microg mL(-1)) or small sample volumes. Amoxicillin was converted, via an internal rearrangement, to form a fluorescent product which was subsequently recovered using liquid-liquid extraction. A Kromasil ODS 3 microm (150 x 3.2 mm I.D.) column was maintained at 40 degrees C and used with a mobile phase consisting of methanol-water (55:45, v/v). Fluorimetric detection was at an lambda(ex) of 365 nm and an lambda(em) of 445 nm. The limits of quantitation for amoxicillin were 0.1 microg mL(-1) for gastric juice aspirate (500 microL), 0.5 microg mL(-1) for plasma (50 microL) and 0.075 microg g(-1) for gastric tissue (250 mg). The method was linear up to at least 15 microg mL(-1) in gastric juice aspirate, up to 200 microg mL(-1) in plasma and up to 100 microg g(-1) in gastric tissue, with inter- and intra-day RSDs being less than 19%. The assay has been applied to the measurement of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

4.
The present work reports the nutritional requirements and environmental conditions for submerged culture of Streptomyces clavuligerus for clavulanic acid production using orthogonal matrix method (Taguchi L(16) design) and also fed-batch fermentation for clavulanic acid production by feeding glycerol, arginine and threonoine to the fermentation medium intermittently. Clavulanic acid production was increased by 18% with the span of feeding glycerol and reached a maximum at 1.30mg/ml with 120h glycerol feeding as compared to 1.10mg/ml in the control. The production also increased with the span of feeding amino acids and reached a maximum of 1.31 and 1.86mg/ml with feeding arginine and threonine, respectively in 120h. There was an overall increase of 18% and 9% in clavulanic acid production with arginine and threonine feeding as compared to the respective controls (1.10 and 1.70mg/ml, respectively).  相似文献   

5.
Fifty two clinical isolates of K. oxytoca were included. All of analysed strains were isolated from wound swabs. The aim of this study was to evaluate MIC value of amoxicillin with clavulanic acid, tigecycline and ciprofloxacin. The susceptibility to amoxicillin with clavulanic acid and tigecycline was tested by the Etest. The susceptibility to ciprofloxacine was tested by the agar dilution method. Among of analysed K. oxytoca strains 44 (84.6%) were susceptible to tigecycline, 27 (51.9%) to amoxicilline with clavulanic acid and 21 (40.4%) to ciprofloxacine. These data suggest that tigecycline, may be an effective therapeutic option for the treatment infections caused by K. oxytoca strains.  相似文献   

6.
The development and validation of a high-performance liquid chromatographic and UV detection method was accomplished for quantitative determination of levamisole in chicken tissues, eggs and plasma. The chromatographic separation was achieved on Luna 5 microm C(18) column using a mobile phase of 0.2% acetic acid in water:methanol (50:50 (v/v)) and Pic B-7 low UV reagent and the pH was adjusted to 7.31 with ammonium hydroxide and UV wavelength was 225 nm. Limits of quantification were 0.025 microg/g for all tissues and 0.003 microg/ml for plasma. Limit of detection was 0.001 microg/g for tissues and plasma.  相似文献   

7.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of iohexol, iothalamate, p-aminohippuric acid (PAH) and n-acetyl-p-aminohippuric acid (n-acetyl-PAH) in human plasma and urine. A C(18) column at a flow rate of 1 ml/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water (pH 2.2), v/v) and methanol gradient was used for component separation. The plasma and urine assay demonstrated linearity from 10 to 50 microg/ml for iohexol and iothalamate, 5 to 40 microg/ml for PAH and 2.5 to 40 microg/ml for n-acetyl-PAH. The HPLC plasma and urine results obtained for PAH were used to calculate the subject kidney effective renal plasma flow (ERPF) and the iohexol results were used to calculate the subject kidney glomerular filtration rate (GFR). The HPLC results for PAH were then compared to an alternative colorimetric method for analyzing PAH to determine if subject metabolism (acetylation) of PAH affected the ERPF results obtained using the colorimetric method, the subsequent ERPF/GFR ratio and clinical impression of subject patient kidney function. The method was utilized in several different clinical studies evaluating the effect of kidney function from medications (phase IV evaluations) marketed for patients with cardiovascular disease.  相似文献   

8.
A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for determination of scopoletin in rat plasma using psoralen as internal standard. Chromatographic separation was achieved on a C(18) column using methanol and distilled water (49:51, v/v) containing 0.05% (v/v) phosphoric acid as mobile phase. The UV detector was set at 345 nm. The calibration curve was linear over the range of 0.165-9.90 microg/ml with a correlation coefficient of 0.9994. The recovery for plasma samples of 0.165, 1.32 and 6.60 microg/ml was 93.2%, 95.9% and 95.5%, respectively. The RSD of intra- and inter-day assay variations was less than 6.7%. This HPLC assay is a precise and reliable method for the analysis of scopoletin in pharmacokinetic studies.  相似文献   

9.
A fast method for the quantitative determination of amoxicillin (AMO), amoxicilloic acid (AMA) and amoxicillin diketopiperazine-2',5'-dione (DIKETO) in pig edible tissues (kidney, liver, fat and muscle) with liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) is presented. The method uses a simple liquid-liquid extraction of the tissue matrix with a 10 mM potassium dihydrogen phosphate buffer (pH 4.5) as extraction solvent. After deproteinisation by ultrafiltration, the tissue extract was directly injected onto the LC column. Chromatographic separation of the components was performed on a PLRP-S polymeric column using 0.1% of formic acid in water and acetonitrile. The mass spectrometer was operated in the positive electrospray MS/MS mode. The method was fully validated according to EU requirements (linearity, precision, trueness, quantification limit, detection limit and specificity). The stability of the components was evaluated over the pH range from 1.2 to 8.0. Biological samples of pigs medicated with AMO and AMO/clavulanic acid were analyzed using the developed method.  相似文献   

10.
Koru O  Ozyurt M 《Anaerobe》2008,14(3):161-165
A total of 60 anaerobic strains were isolated from 322 clinical specimens. These isolates were tested for susceptibility to seven antibiotics (penicillin G, amoxicillin/clavulanic acid, cefoxitin, imipenem, chloramphenicol, metronidazole, clindamycin) by using ATB-ANA and Epsilometer test (E-test) strips and the results were compared with the gold standard agar dilution method. Imipenem was found as the most effective agent in vitro among the agents tested (100%). Susceptibility to penicillin G, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, metronidazole and clindamycin are 36.7%, 83.3%, 88.3%, 96.6%, 85% and 90%, respectively. E-test has showed a good correlation (r=0.62, p=0.001) statistically with the results of agar dilution (total agreement for all antibiotics changing between 90.01% and 98.45%) and a moderate correlation (r=0.45, p=0.048) with the results of ATB-ANA method (total agreement for all antibiotics changing between 75.46% and 98.76%). However, the routine use of agar dilution procedure is concluded to be cumbersome, whereas E-test method offers a reliable alternative.  相似文献   

11.
AIMS: To improve the production of clavulanic acid through the development of strains, the selection of a production medium and a pH shift strategy in a bioreactor. METHODS AND RESULTS: Streptomyces clavuligerus mutant 15 was selected by antibacterial activities. As a result of pH control in a 2.5 l bioreactor, the highest productivity (3.37 microg x ml(-1) x h(-1)) was obtained at a controlled pH of 7.0. CONCLUSIONS: The highest level of production obtained was an increase of about 36% compared with a non-controlled pH. When the production of clavulanic acid reached the maximum level, the pH was shifted from 7.0 to 6.0 for reduction in decomposition rate. The maximum concentration of clavulanic acid was maintained for 24 h as a result of the pH shift control, and a significant reduction in the decomposition of clavulanic acid was obtained. SIGNIFICANCE AND IMPACT OF THE STUDY: Clavulanic acid decomposition was considerably reduced as a result of the pH shift control. The results of this study can be applied for the efficient production of beta-lactamase inhibitory antibiotics.  相似文献   

12.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

13.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine cefixime ((6R,7R)-7-[(Z)-2-(2-amino-4-thiazolyl)-2-(carboxymethoxyimino)acetamido]-8-oxo-3-vinyl-5-thia-1-azabicyclo-[4,2,0]-oct-2-ene-2-carboxylic acid) in human plasma. After a simple protein precipitation using acetonitrile, the post-treatment samples were analyzed on a C(8) column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile-water-formic acid (40:60:0.5, v/v/v). The analyte and internal standard cefetamet were both detected by use of selected reaction monitoring mode. The method was linear in the concentration range of 0.05-8.0 microg/ml. The lower limit of quantification was 0.05 microg/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 12.7%. The accuracy determined at three concentrations (0.05, 0.80 and 7.2 microg/ml for cefixime) was within +/-2.0% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefixime capsule in 24 healthy volunteers.  相似文献   

14.
Clavulanic acid, a naturally occurring powerful inhibitor of bacterial beta-lactamases, is produced by Streptomyces clavuligerus. The high void volume, permeability, and low cost of fibrous matrices prompted the use of Luffa cylindrica as a matrix for the immobilization of S. clavuligerus for the production of clavulanic acid. Immobilization of S. clavuligerus onto loofah sponge discs was studied with respect to the optimization of the inoculum size (number of discs) and its reusability for clavulanic acid production. Best yield of 1125 microg ml(-1) clavulanic acid was reached with two discs of loofah sponge (each approximately 0.136 g dry weight) and 120 h duration in the first cycle. Data obtained during four reusable cycles showed reduction in the initiation time of clavulanic acid production, resulting in higher levels of clavulanic acid in shorter time duration. Immobilization of S. clavuligerus on to loofah sponge discs, therefore, permit repeated reuse under the specified fermentation conditions for clavulanic acid production.  相似文献   

15.
A simple, rapid, sensitive and reliable high performance liquid chromatography (HPLC) method for the determination of the anti-ulcer drug sofalcone in human plasma was developed. Plasma was extracted with ethyl acetate under acidic conditions and sofalcone was determined by HPLC using a C18 column and (methanol-0.1% formic acid aqueous 80:20) mobile phase. The linear calibration curves of sofalcone in human plasma were obtained over the concentration range of 0.01-5.0 microg/ml. The lower limit of quantitation (LLOQ) was 10 ng/ml in human plasma. The precision measured for plasma was within 15%. Extraction recovery was over 85% in blood. The method was successfully applied to the identification and quantification of sofalcone in pharmacokinetic studies.  相似文献   

16.
A simple, sensitive and reproducible HPLC method is presented for the simultaneous determination of mycophenolic acid (MPA) and its metabolites phenolic MPA-glucuronide (MPAG) and acyl glucuronide (AcMPAG) in human plasma. Sample purification requires protein precipitation with 0.1 M phosphoric acid/acetonitrile in the presence of Epilan D as an internal standard (IS). Separation was performed by reversed-phase HPLC, using a Zorbax SB-C18 column, 32% acetonitrile and a 40 mM phosphoric acid buffer at pH 3.0 as mobile phase; column temperature was 50 degrees C, flow rate 1.4 ml/min, and measurement by UV detection was at 215 nm (run time 12 min). The method requires only 50 microl plasma. Detection limits were 0.1 microg/ml for MPA and AcMPAG, and 2.0 microg/ml for MPAG, respectively. Mean absolute recovery of all three analytes was >95%. This analytical method for the determination of MPA and its metabolites is a reliable and convenient procedure that meets the criteria for application in routine clinical drug monitoring and pharmacokinetic studies.  相似文献   

17.
A specific and sensitive high-performance liquid chromatographic (HPLC) method with photodiode-array (PDA) ultraviolet detection was developed for the simultaneous determination of three bioactive constituents of Cedrus deodara namely wikstromol, matairesinol and dibenzylbutyrolactol in mouse plasma. In solid-phase extraction (SPE) these constituents were successfully separated using a C18 column by isocratic elution using acetonitrile:water containing hexanesulphonic acid, 32:68 (v/v). The flow rate was set at 1ml/min and detector wavelength at 225nm. Good linearity (r2>0.999) was observed over the studied range of 0.015-5.0microg/ml for wikstromol and 0.030-5.0microg/ml for matairesinol and dibenzylbutyrolactol. The CV values of intra-day precision for wikstromol, matairesinol and dibenzylbutyrolactol were in between 1.8-6.9, 1.7-4.9 and 1.6-4.2% and values of inter-day precision were in between 10.4-12.2, 9.7-11 and 10-11.2%, respectively. The extraction recoveries at low to high concentration were greater than 98, 83 and 87% for each analyte, respectively. The LOQ for wikstromol was 0.015microg/ml and for both matairesinol and dibenzylbutyrolactol it was 0.030microg/ml. The developed method was used to determine the pharmacokinetics of the three analytes in mice after intraperitoneal administration of CD-3.  相似文献   

18.
A molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC) method was developed for rapid screening of mycophenolic acid (MPA) in human plasma. MPA imprinted polymers (MPA-MIP) were synthesized and then tested for their performance both in organic and in aqueous solution. MPA was selectively trapped and preconcentrated on the MPA-MIP sorbent using different loading and washing conditions. The good selectivity of MPA-MIP enabled further clean-up of the interfering components in human plasma. For the proposed MISPE-HPLC method, the linearity between responses (peak area) and concentration was found over the range of 1-100microg/ml with a linear regression coefficient (R(2)) of 0.9989. The limit of detection (LOD) and theoretical limit of quantification (LOQ) for MPA in plasma were 0.10 and 0.32microg/ml, respectively. The precisions were 7.3, 3.5 and 4.7% RSD for intra-day assay and 9.2, 4.1 and 5.5% RSD for inter-day reproducibility, respectively, at three concentration levels of MPA in spiked plasma (1, 10 and 100microg/ml). Both recoveries for the extraction (more than 74%) and for the analytical method (more than 87%) were acceptable for screening MPA in plasma samples. Twelve-hour pharmacokinetic profile of MPA for a renal transplant recipient receiving chronic oral dosing of 500mg mycophenolate mofetil (MMF) was investigated. Results indicated that this method could be applied for therapeutic drug monitoring of mycophenolic acid in patient plasma.  相似文献   

19.
A high-performance liquid chromatographic (HPLC) method was developed using solid-phase extraction, o-phthalaldehyde (OPA) derivatization and fluorescence detection for the determination of the direct thrombin inhibitor bivalirudin in human plasma and urine. The use of this assay will facilitate the study of the pharmacodynamics of bivalirudin in studies of special patient populations. A C(18) bioanalytical column at a flow rate of 1 ml/min with an aqueous trifluoroacetic acid (0.1% TFA in deionized water, pH 2.2, v/v) mobile phase and methanol gradient was used. The assay demonstrated linearity from 3 to 20 microg/ml bivalirudin in plasma, with a detection limit of 1 microg/ml. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of bivalirudin in patients undergoing percutaneous coronary interventions (PCIs).  相似文献   

20.
An isocratic and sensitive HPLC assay was developed allowing the determination of the new anticancer drug nilotinib (AMN107) in human plasma, urine, culture medium and cell samples. After protein precipitation with perchloric acid, AMN107 underwent an online enrichment using a Zirchrom-PBD precolumn, was separated on a Macherey-Nagel C18-HD column and finally quantified by UV-detection at 258 nm. The total run time is 25 min. The assay demonstrates linearity within a concentration range of 0.005-5.0 microg/ml in plasma (r(2)=0.9998) and 0.1-10.0 microg/ml in urine (r(2)=0.9913). The intra-day precision expressed as coefficients of variation ranged depending on the spiked concentration between 1.27-9.23% in plasma and 1.77-3.29% in urine, respectively. The coefficients of variation of inter-day precision was lower than 10%. Limit of detection was 0.002 microg/ml in plasma and 0.01 microg/ml in urine. The described method is stable, simple, economic and is routinely used for in vivo and in vitro pharmacokinetic studies of AMN107.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号