首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 ? resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.  相似文献   

2.
Human somatic angiotensin I-converting enzyme (sACE) has two active sites present in two sequence homologous protein domains (ACE_N and ACE_C) possessing several biochemical features that differentiate the two active sites (i.e. chloride ion activation). Based on the recently solved X-ray structure of testis angiotensin-converting enzyme (tACE), the 3D structure of ACE_N was modeled. Electrostatic potential calculations reveal that the ACE_N binding groove is significantly more positively charged than the ACE_C, which provides a first rationalization for their functional discrimination. The chloride ion pore for Cl2 (one of the two chloride ions revealed in the X-ray structure of tACE) that connects the external solution with the inner part of the protein was identified on the basis of an extended network of water molecules. Comparison of ACE_C with the X-ray structure of the prokaryotic ClC Cl(-) channel from Salmonella enterica serovar typhimurium demonstrates a common molecular basis of anion selectivity. The critical role for Cl2 as an ionic switch is emphasized. Sequence and structural comparison between ACE_N and ACE_C and of other proteins of the gluzincin family highlights key residues that could be responsible for the peptide hydrolysis mechanism. Currently available mutational and substrate hydrolysis data for both domains are evaluated and are consistent with the predicted model.  相似文献   

3.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   

4.
Angiotensin-I converting enzyme (ACE, a zinc dependent dipeptidyl carboxypeptidase) is a major target of drugs due to its role in the modulation of blood pressure and cardiovascular disorders. Here we present a crystal structure of AnCE (an ACE homologue from Drosophila melanogaster with a single enzymatic domain) in complex with a natural product-phosphonotripeptide, K-26 at 1.96 Å resolution. The inhibitor binds exclusively in the S1 and S2 binding pockets of AnCE (coordinating the zinc ion) through ionic and hydrogen bond interactions. A detailed structural comparison of AnCE·K-26 complex with individual domains of human somatic ACE provides useful information for further exploration of ACE inhibitor pharmacophores involving phosphonic acids.  相似文献   

5.
The crystal structure of a Drosophila angiotensin-converting enzyme (ANCE) has recently been solved, revealing features important for the binding of ACE inhibitors and allowing molecular comparisons with the structure of human testicular angiotensin-converting enzyme (tACE). ACER is a second Drosophila ACE that displays both common and distinctive properties. Here we report further functional differences between ANCE and ACER and have constructed a homology model of ACER to help explain these. The model predicts a lack of the Cl(-)-binding sites, and therefore the strong activation of ACER activity towards enkephalinamide peptides by NaCl suggests alternative sites for Cl(-) binding. There is a marked difference in the electrostatic charge of the substrate channel between ANCE and ACER, which may explain why the electropositive peptide, MKRSRGPSPRR, is cleaved efficiently by ANCE with a low K(m), but does not bind to ACER. Bradykinin (BK) peptides are excellent ANCE substrates. Models of BK docked in the substrate channel suggest that the peptide adopts an N-terminal beta-turn, permitting a tight fit of the peptide in the substrate channel. This, together with ionic interactions between the guanidino group of Arg9 of BK and the side chains of Asp360 and Glu150 in the S(2)' pocket, are possible reasons for the high-affinity binding of BK. The replacement of Asp360 with a histidine in ACER would explain the higher K(m) recorded for the hydrolysis of BK peptides by this enzyme. Other differences in the S(2)' site of ANCE and ACER also explain the selectivity of RXPA380, a selective inhibitor of human C-domain ACE, which also preferentially inhibits ACER. These structural and enzymatic studies provide insight into the molecular basis for the distinctive enzymatic features of ANCE and ACER.  相似文献   

6.
Angiotensin converting enzyme (ACE) plays a critical role in the circulating or endocrine renin-angiotensin system (RAS) as well as the local regulation that exists in tissues such as the myocardium and skeletal muscle. Here we report the high-resolution crystal structures of testis ACE (tACE) in complex with the first successfully designed ACE inhibitor captopril and enalaprilat, the Phe-Ala-Pro analogue. We have compared these structures with the recently reported structure of a tACE-lisinopril complex [Natesh et al. (2003) Nature 421, 551-554]. The analyses reveal that all three inhibitors make direct interactions with the catalytic Zn(2+) ion at the active site of the enzyme: the thiol group of captopril and the carboxylate group of enalaprilat and lisinopril. Subtle differences are also observed at other regions of the binding pocket. These are compared with N-domain models and discussed with reference to published biochemical data. The chloride coordination geometries of the three structures are discussed and compared with other ACE analogues. It is anticipated that the molecular details provided by these structures will be used to improve the binding and/or the design of new, more potent domain-specific inhibitors of ACE that could serve as new generation antihypertensive drugs.  相似文献   

7.
The angiotensin-converting enzyme (ACE) plays a crucial role in male fertilization and is a key regulator of blood pressure. Testicular ACE (tACE), the germinal specific isozyme expressed on different promoters, exclusively carries out the role of ACE in fertility, although the site and mode of action are not well known. To investigate the contribution of tACE in fertilization, we produced transgenic mouse lines carrying a dipeptidase-inactivated mutant. Although the transgenic mice showed normal blood pressure, kidney morphology, and fertility, reduced fertilization was observed after in vitro fertilization (IVF). The sperm-zona pellucida (ZP) binding was exclusively impaired in these lines in a manner similar to that observed in an Ace knockout mouse. The dipeptidase activity was reduced in epididymal ingredients but not in the testis. Furthermore, direct application of mutant protein did not suppress sperm-ZP binding of intact sperm during IVF, implying that the dipeptidase-inactivated mutant affects sperm modification in the epididymis for ZP binding. Our results indicate that the dipeptidase-inactivated tACE acts in vivo, suggesting that tACE contributes to fertilization as a dipeptidase at least in the epididymis.  相似文献   

8.
Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn2+ to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn2+. This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer’s patient.  相似文献   

9.
Binding of a panel of eight monoclonal antibodies (mAbs) with the C domain of angiotensin converting enzyme (ACE) to human testicular ACE (tACE) (corresponding to the C domain of the somatic enzyme) was studied and the inhibition of the enzyme by the mAb 4E3 was found. The dissociation constants of complexes of two mAbs, IB8 and 2H9, with tACE were 2.3 +/- 0.4 and 2.5 +/- 0.4 nM, respectively, for recombinant tACE and 1.6 +/- 0.3 nM for spermatozoid tACE. Competition parameters of mAb binding with tACE were obtained and analyzed. As a result, the eight mAbs were divided into three groups, whose binding epitopes did not overlap: (1) 1E10, 2B11, 2H9, 3F11, and 4E3; (2) 1B8 and 3F10; and (3) IB3. A diagram demonstrating mAb competitive binding with tACE was proposed. Comparative analysis of mAb binding to human and chimpanzee ACE was carried out, which resulted in revealing of two amino acid residues, Lys677 and Pro730, responsible for binding of three antibodies, 1E10, 1B8, and 3F10. It was found by mutation of Asp616 located close to Lys677 that the mAb binding epitope 1E10 contains Asp616 and Lys677, whereas mAbs 1B8 and 3F10 contain Pro730.  相似文献   

10.
Angiotensin-converting enzyme (ACE) exists as two isoforms: somatic ACE (sACE), comprised of two homologous N and C domains, and testis ACE (tACE), comprised of the C domain only. The N and C domains are both active, but show differences in substrate and inhibitor specificity. While both isoforms are shed from the cell surface via a sheddase-mediated cleavage, tACE is shed much more efficiently than sACE. To delineate the regions of tACE that are important in catalytic activity, intracellular processing, and regulated ectodomain shedding, regions of the tACE sequence were replaced with the corresponding N-domain sequence. The resultant chimeras C1-163Ndom-ACE, C417-579Ndom-ACE, and C583-623Ndom-ACE were processed to the cell surface of transfected Chinese hamster ovary (CHO) cells, and were cleaved at the identical site as that of tACE. They also showed acquisition of N-domain-like catalytic properties. Homology modelling of the chimeric proteins revealed structural changes in regions required for tACE-specific catalytic activity. In contrast, C164-416Ndom-ACE and C191-214Ndom-ACE demonstrated defective intracellular processing and were neither enzymatically active nor shed. Therefore, critical elements within region D164-V416 and more specifically I191-T214 are required for the processing, cell-surface targeting, and enzyme activity of tACE, and cannot be substituted for by the homologous N-domain sequence.  相似文献   

11.
Binding of a panel of eight monoclonal antibodies (mAbs) with the C domain of angiotensin converting enzyme (ACE) to human testicular ACE (tACE) (corresponding to the C domain of the somatic enzyme) was studied, and the inhibition of the enzyme by the mAb 4A3 was found. The dissociation constants of complexes of two mAbs, 1B8 and 2H9, with tACE were 2.3 ± 0.4 and 2.5 ± 0.4 nM, respectively, for recombinant tACE and 4.7 ± 0.5 and 1.6 ± 0.3 nM for spermatozoid tACE. Competition parameters of mAb binding with tACE were obtained and analyzed. As a result, the eight mAbs were divided into three groups, whose binding epitopes did not overlap: (1) 1E10, 2B11, 2H9, 3F11, and 4E3; (2) 1B8 and 3F10; and (3) 1B3. A diagram demonstrating mAb competitive binding with tACE was proposed. Comparative analysis of mAb binding to human and chimpanzee ACE was carried out, which resulted in revealing of two amino acid residues, Lys677 and Pro730, responsible for binding of three antibodies, 1E10, 1B8, and 3F10. It was found by mutation of Asp616 located close to Lys677 for Leu that the mAb binding epitope 1E10 contains Asp616 and Lys677, whereas mAbs 1B8 and 3F10 contain Pro730.  相似文献   

12.
Human angiotensin-converting enzyme is an important drug target for which little structural information has been available until recent years. The slow progress in obtaining a crystal structure was due to the problem of surface glycosylation, a difficulty that has thus far been overcome by the use of a glucosidase-1 inhibitor in the tissue culture medium. However, the prohibitive cost of these inhibitors and incomplete glucosidase inhibition makes alternative routes to minimizing the N-glycan heterogeneity desirable. Here, glycosylation in the testis isoform (tACE) has been reduced by Asn-Gln point mutations at N-glycosylation sites, and the crystal structures of mutants having two and four intact sites have been solved to 2.0 A and 2.8 A, respectively. Both mutants show close structural identity with the wild-type. A hinge mechanism is proposed for substrate entry into the active cleft, based on homology to human ACE2 at the levels of sequence and flexibility. This is supported by normal-mode analysis that reveals intrinsic flexibility about the active site of tACE. Subdomain II, containing bound chloride and zinc ions, is found to have greater stability than subdomain I in the structures of three ACE homologues. Crystallizable glycosylation mutants open up new possibilities for cocrystallization studies to aid the design of novel ACE inhibitors.  相似文献   

13.
Angiotensin I-converting enzyme (ACE, CD143) has two homologous domains, each having a functional active site. Fine epitope mapping of 8 mAbs to the C-terminal domain of human ACE was carried out using plate precipitation assays, mAbs' cross-reactivity with ACE from different species, site-directed mutagenesis, and antigen- and cell-based ELISAs. Almost all epitopes contained potential glycosylation sites. Therefore, these mAbs could be used to distinguish different glycoforms of ACE expressed in different tissues or cell lines. mAbs 1B8 and 3F10 were especially sensitive to the composition of the N-glycan attached to Asn 731; mAbs 2H9 and 3F11 detected the glycosylation status of the glycan attached to Asn 685 and perhaps Asn1162; and mAb 1E10 and 4E3 recognized the glycan on Asn 666. The epitope of mAb 1E10 is located at the N-terminal end of the C domain, close to the unique 36 amino acid residues of testicular ACE (tACE). Moreover, it binds preferentially to tACE on the surface of human spermatozoa and thus may find application as an immunocontraceptive drug. mAb 4E3 was the best mAb for quantification of ACE-expressing somatic cells by flow cytometry. In contrast to the other mAbs, binding of mAb 2B11 was not markedly influenced by ACE glycosylation or by the cell culture conditions or cell types, making this mAb a suitable reference antibody. Epitope mapping of these C-domain mAbs, particularly those that compete with N-domain mAbs, enabled us to propose a model of the two-domain somatic ACE that might explain the interdomain cooperativity. Our findings demonstrated that mAbs directed to conformational epitopes on the C-terminal domain of human ACE are very useful for the detection of testicular and somatic ACE, quantification using flow cytometry and ELISA assays, and for the study of different aspects of ACE biology.  相似文献   

14.

Background

Angiotensin converting enzyme (ACE) is a metalloprotease with two isoforms. The somatic isoform is a key component of the renin-angiotensin system; its main function is to hydrolyse angiotensin I into angiotensin II. The germinal or testicular isoform (tACE) located at the plasma membrane of the spermatozoa, plays a crucial role in the spermatozoa-oocyte interaction during in vivo fertilization, in rodents. Disruption of the tACE in mice has revealed that homozygous male tACE?/? sire few pups despite mating normally. Few spermatozoa from these tACE?/? mice are bound to the zona pellucida (ZP) despite normal semen parameters. Based on these findings in mice models, we hypothesized that some infertile men that have the same phenotype as the tACE?/? mice, ie normal semen parameters and a lack of sperm bind to the ZP in vitro, may have a tACE defect.

Methods

Twenty four men participated to this study. The case subjects (n?=?10) had normal semen parameters according to the WHO guidelines (WHO 1999) but a total in vitro fertilization failure with absence of sperm fixation to the ZP. The control subjects (n?=?14) also had normal semen parameters and a normal fertilization rate ≥65%. We investigated the tACE expression in spermatozoa by Western-Blot and performed a DNA sequencing of the tACE gene.

Results

Three case-subjects and one control-subject had no tACE expression. There were no statistic differences between the two groups. No mutation was detected in the tACE DNA sequence.

Conclusions

Our results didn’t show any involvement of tACE in human fertilization especially in ZP binding.  相似文献   

15.
The mechanism of binding of thyroid hormones by the transport protein transthyretin (TTR) in vertebrates is structurally well characterised. However, a homologous family of transthyretin-like proteins (TLPs) present in bacteria as well as eukaryotes do not bind thyroid hormones, instead they are postulated to perform a role in the purine degradation pathway and function as 5-hydroxyisourate hydrolases. Here we describe the 2.5 Angstroms X-ray crystal structure of the TLP from the Gram-negative bacterium Salmonella dublin, and compare and contrast its structure with vertebrate TTRs. The overall architecture of the homotetramer is conserved and, despite low sequence homology with vertebrate TTRs, structural differences within the monomer are restricted to flexible loop regions. However, sequence variation at the dimer-dimer interface has profound consequences for the ligand binding site and provides a structural rationalisation for the absence of thyroid hormone binding affinity in bacterial TLPs: the deep, negatively charged thyroxine-binding pocket that characterises vertebrate TTR contrasts with a shallow and elongated, positively charged cleft in S. dublin TLP. We have demonstrated that Sdu_TLP is a 5-hydroxyisourate hydrolase. Furthermore, using site-directed mutagenesis, we have identified three conserved residues located in this cleft that are critical to the enzyme activity. Together our data reveal that the active site of Sdu_TLP corresponds to the thyroxine binding site in TTRs.  相似文献   

16.
The transient receptor potential-like ion channel from Drosophila melanogaster was originally identified as a calmodulin binding protein (Philips et al., 1992) involved in the dipterian phototransduction process. We used a series of fusion proteins and an epitope expression library of transient receptor potential-like fusion proteins to characterize calmodulin binding regions in the transient receptor potential-like channel through the use of [125I]calmodulin and biotinylated calmodulin and identified two distinct sites at the C-terminus of the transient receptor potential-like ion channel. Calmodulin binding site 1, predicted from searching of the primary structure for amphiphilic helices (Philips et al., 1992), covers a 16 amino acid sequence (S710-I725) and could only be detected through biotinylated calmodulin. Calmodulin binding site 2 comprises at least 13 amino acids (K859ETAKERFQRVAR871) and binds both [125I]calmodulin and biotinylated calmodulin. Both sites (i) bind calmodulin at least in a one to one stoichiometry, (ii) differ in their affinity for calmodulin revealing apparent Ki values of 12.3 nM (calmodulin binding site 1) and 1.7 nM (calmodulin binding site 2), respectively, (iii) bind calmodulin only in the presence of Ca2+ with 50% of site 1 and site 2, respectively, occupied by calmodulin in the presence of 0.1 microM (calmodulin binding site 1) and 3.3 microM Ca2+ (calmodulin binding site 2) and give evidence that (iv) a Ca2+-calmodulin-dependent mechanism contributes to transient receptor potential-like cation channel modulation when expressed in CHO cells.  相似文献   

17.
Angiotensin-converting enzyme 2 (ACE2), a homologue of ACE, represents a new and potentially important target in cardio-renal disease. A model of the active site of ACE2, based on the crystal structure of testicular ACE, has been developed and indicates that the catalytic mechanism of ACE2 resembles that of ACE. Structural differences exist between the active site of ACE (dipeptidyl carboxypeptidase) and ACE2 (carboxypeptidase) that are responsible for the differences in specificity. The main differences occur in the ligand-binding pockets, particularly at the S2' subsite and in the binding of the peptide carboxy-terminus. The model explains why the classical ACE inhibitor lisinopril is unable to bind to ACE2. On the basis of the ability of ACE2 to cleave a variety of biologically active peptides, a consensus sequence of Pro-X-Pro-hydrophobic/basic for the protease specificity of ACE2 has been defined that is supported by the ACE2 model. The dipeptide, Pro-Phe, completely inhibits ACE2 activity at 180 microM with angiotensin II as the substrate. As with ACE, the chloride dependence of ACE2 is substrate-specific such that the hydrolysis of angiotensin I and the synthetic peptide substrate, Mca-APK(Dnp), are activated in the presence of chloride ions, whereas the cleavage of angiotensin II is inhibited. The ACE2 model is also suggestive of a possible mechanism for chloride activation. The structural insights provided by these analyses for the differences in inhibition pattern and substrate specificity among ACE and its homologue ACE2 and for the chloride dependence of ACE/ACE2 activity are valuable in understanding the function and regulation of ACE2.  相似文献   

18.
R-spondin 4 is a secreted protein mainly associated with embryonic nail development. R-spondins have been recently identified as heparin-binding proteins with high affinity. Proteoglycan binding has been associated with both the TSR and the C terminal basic amino acid rich domains. In this paper, molecular modelling techniques were used to construct the model of R-spondin 4 TSR domain based on the structure of the F-spondin TSR domain 4 (30-40¢ sequence identity). Beside a positively charged surface in the TSR domain, presence of the basic amino acid rich domain which could forms a continuous heparin binding surface may explain the high affinity of R-spondins for heparin. Our results provide a framework for understanding the possible regulatory role of heparin in R-spondins signalling.  相似文献   

19.
The ATP-sensitive potassium (K(ATP)) channel links cell metabolism to membrane excitability. Intracellular ATP inhibits channel activity by binding to the Kir6.2 subunit of the channel, but the ATP binding site is unknown. Using cysteine-scanning mutagenesis and charged thiol-modifying reagents, we identified two amino acids in Kir6.2 that appear to interact directly with ATP: R50 in the N-terminus, and K185 in the C-terminus. The ATP sensitivity of the R50C and K185C mutant channels was increased by a positively charged thiol reagent (MTSEA), and was reduced by the negatively charged reagent MTSES. Comparison of the inhibitory effects of ATP, ADP and AMP after thiol modification suggests that K185 interacts primarily with the beta-phosphate, and R50 with the gamma-phosphate, of ATP. A molecular model of the C-terminus of Kir6.2 (based on the crystal structure of Kir3.1) was constructed and automated docking was used to identify residues interacting with ATP. These results support the idea that K185 interacts with the beta-phosphate of ATP. Thus both N- and C-termini may contribute to the ATP binding site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号