首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fermentative toluene degradation in anaerobic defined syntrophic cocultures   总被引:7,自引:0,他引:7  
A syntrophic coculture of a new sulfate-reducing isolate, strain TRM1, with Wolinella succinogenes degraded toluene with either fumarate or NO3- as the terminal electron acceptor. Neither strain TRM1 nor W. succinogenes could metabolise toluene under these conditions in pure culture. Syntrophic degradation was 2-3 times slower than toluene utilisation by strain TRM1 in pure culture with sulfate as electron acceptor. The culture did not produce benzoate or fatty acids like acetate or propionate in detectable amounts. An increase in biomass of the syntrophic toluene-degrading culture was shown in a growth curve with nitrate as the terminal electron acceptor. Both partner organisms were detected microscopically at the end of the growth experiment. Syntrophic degradation of toluene with W. succinogenes and fumarate as the terminal electron acceptor was also demonstrated with the iron reducer Geobacter metallireducens. The results provide the first example of a fermentative oxidation of an aromatic hydrocarbon in a defined coculture.  相似文献   

2.
Abstract Teltrachloroethylene (PCE) was biotransformed by reductive dehalgenation under anoxic conditions with benzoate as the electron donor. The experiments were carried out under batch culture conditions with biomass from an anoxic fixed bed reactor fed with benzoate and PCE. Inhibition of methanogenesis by bromoethane-sulfonic acid (BES) resulted in a complete inhibition of benzoate degradation. Benzoate, however, was decomposed in the presence of BES if PCE was added to the cultures. With 2.8 mmol/1 PCE, that was transformed to 1.4 mmol/1 cis-1,2-dichloroethylene (DCE) and 3.8 mmol/1 chloride, 2 mmol/1 benzoate were degraded to about 3.2 mmol/1 acetate. The elimination of benzoate was directly proportional to DCE accumulation, ranging between 1:0.5 and 1:1.  相似文献   

3.
Products observed during anaerobic cyanide transformation are consistent with a hydrolytic pathway (HCN + H2O <--> HCONH2 + H2O <--> HCOOH + NH3). Formate, the most frequently observed product, was generally converted to bicarbonate. Formamide was rapidly hydrolyzed to formate upon exposure to the anaerobic consortium but was not detected as an intermediate of cyanide transformation.  相似文献   

4.
Products observed during anaerobic cyanide transformation are consistent with a hydrolytic pathway (HCN + H2O <--> HCONH2 + H2O <--> HCOOH + NH3). Formate, the most frequently observed product, was generally converted to bicarbonate. Formamide was rapidly hydrolyzed to formate upon exposure to the anaerobic consortium but was not detected as an intermediate of cyanide transformation.  相似文献   

5.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

6.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

7.
Dong X  Stams AJ 《Anaerobe》1995,1(1):35-39
Both H2 and formate were formed during butyrate oxidation by Syntrophospora bryantii with pentenoate as electron acceptor and during propionate oxidation by a mesophilic propionate oxidizing bacterium (MPOB) with fumarate as electron acceptor. H2 and formate levels were affected by the bicarbonate concentration. S bryantii and MPOB were also able to interconvert formate and H2+ HCO3-; the apparent K(M) values for formate were of 2.9 mM and 1.8 mM, respectively. The conversion of H2+ HCO3- to formate was detected only when the H2 partial pressure was above 80 kPa. This interconversion seems to be rather unimportant under conditions prevailing during syntrophic propionate and butyrate oxidation.  相似文献   

8.
Evidence that the metabolic acidosis threshold is the anaerobic threshold   总被引:3,自引:0,他引:3  
We evaluated maximal O2 uptake (VO2max), the metabolic acidosis threshold determined by the V-slope analysis [plot of CO2 output (VCO2) as a function of oxygen uptake (VO2)], the ratio of increase in VO2 to work rate increment (delta VO2/delta WR), the upper slope (S2) of the V-slope analysis, and the VO2 for work below and above the metabolic acidosis threshold to determine whether the changes in O2 transport caused by increased carboxyhemoglobin (HbCO) affected these parameters and variables. Ten normal subjects (aged 32.8 +/- 7.1 yr) performed symptom-limited incremental exercise tests in a ramp pattern on a cycle ergometer while breathing air and air with added carbon monoxide to cause HbCO to be approximately 11% and 20%. VO2max decreased by 11.6 and 19.3%, the metabolic acidosis threshold decreased by 11.9 and 19.6%, delta VO2/delta WR decreased by 8.9 and 14.0%, and S2 increased by 13.6 and 21.8% when HbCO was increased to 11 and 20%, respectively. Most importantly, VO2 was unchanged related to work rate below the metabolic acidosis threshold during the tests with increased HbCO but was reduced at the work rates above the metabolic acidosis threshold. These findings are consistent with the concept that the metabolic acidosis threshold is synonymous with an anaerobic threshold, i.e., the latter demarcating the VO2 above which the contracting muscles are not adequately supplied with O2 but below which they are.  相似文献   

9.
The role of benzoate in anaerobic degradation of terephthalate   总被引:14,自引:0,他引:14  
The effects of acetate, benzoate, and periods without substrate on the anaerobic degradation of terephthalate (1, 4-benzene-dicarboxylate) by a syntrophic methanogenic culture were studied. The culture had been enriched on terephthalate and was capable of benzoate degradation without a lag phase. When incubated with a mixture of benzoate and terephthalate, subsequent degradation with preference for benzoate was observed. Both benzoate and acetate inhibited the anaerobic degradation of terephthalate. The observed inhibition is partially irreversible, resulting in a decrease (or even a complete loss) of the terephthalate-degrading activity after complete degradation of benzoate or acetate. Irreversible inhibition was characteristic for terephthalate degradation only because the inhibition of benzoate degradation by acetate could well be described by reversible noncompetitive product inhibition. Terephthalate degradation was furthermore irreversibly inhibited by periods without substrate of only a few hours. The inhibition of terephthalate degradation due to periods without substrate could be overcome through incubation of the culture with a mixture of benzoate and terephthalate. In this case no influence of a period without substrate was observed. Based on these observations it is postulated that decarboxylation of terephthalate, resulting in the formation of benzoate, is strictly dependent on the concomitant fermentation of benzoate. In the presence of higher concentrations of benzoate, however, benzoate is the favored substrate over terephthalate, and the culture loses its ability to degrade terephthalate. In order to overcome the inhibition of terephthalate degradation by benzoate and acetate, a two-stage reactor system is suggested for the treatment of wastewater generated during terephthalic acid production.  相似文献   

10.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via beta-oxidation and subsequently completely degraded into acetate, CH(4), and CO(2). Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH(4), and CO(2). A new anaerobic degradation pathway of cinnamate into benzoate via beta-oxidation by a pure culture of P. cinnamivorans is proposed.  相似文献   

11.
12.
13.
Summary An obligate syntrophic culture was selected in mineral medium with phenol as the only carbon and energy source. The consortium consisted of a short and a long rod-shaped bacterium and of low numbers of Desulfovibrio cells, and grew only in syntrophy with methanogens, e. g. Methanospirillum hungatei. Under N2/CO2, phenol was degraded via benzoate to acetate, CH4 and CO2, while in the presence of H2/CO2 benzoate was formed, but not further degraded. When 4-hydroxybenzoate was fed to the mixed culture, it was decarboxylated to phenol prior to benzoate formation and subsequent ring cleavage. Isolation of pure cultures of the two rod-shaped bacteria failed. Microscopic observations during feeding of either 4-hydroxybenzoate, phenol or benzoate implied an obligate syntrophic interdependence of the two different rod-shaped bacteria and of the methanogen. The non-motile rods formed phenol from 4-hydroxybenzoate and benzoate from phenol, requiring an as yet unknown co-substrate or co-factor, probably cross-fed by the short, motile rod. The short, motile rodshaped bacterium grew only in syntrophy with methanogens and degraded benzoate to acetate, CO2 and methane. Desulfovibrio sp., present in low numbers, apparently could not contribute to the degradation of phenol or 4-hydroxybenzoate.  相似文献   

14.
15.
Syntrophomonas wolfei and Syntrophus buswellii were grown with butyrate or benzoate in a defined binary coculture with Methanospirillum hungatei. Both strains also grew independent of the partner bacteria with crotonate as substrate. Localization of enzymes involved in butyrate oxidation by S. wolfei revealed that ATP synthase, hydrogenase, and butyryl-CoA dehydrogenase were at least partially membrane-associated whereas 3-hydroxybutyryl-CoA dehydrogenase and crotonase were entirely cytoplasmic. Inhibition experiments with copper chloride indicated that hydrogenase faced the outer surface of the cytoplasmic membrane. Suspensions of butyrate-or benzoate-grown cells of either strain accumulated hydrogen during oxidation of butyrate or benzoate to a low concentration that was thermodynamically in equilibrium with calculated reaction energetics. The protonophore carbonylcyanide m-chlorophenyl-hydrazone (CCCP) and the proton-translocating ATPase inhibitor N,Ndicyclohexylcarbodiimide (DCCD) both specifically inhibited hydrogen formation from butyrate or benzoate at low concentrations, whereas hydrogen formation from crotonate was not affected. A menaquinone was extracted from cells of S. wolfei and S. buswellii grown syntrophically in a binary methanogenic culture. The results indicate that a proton-potential-driven process is involved in hydrogen release from butyrate or benzoate oxidation.Abbreviations BES Bromoethanesulfonate - CCCP Carbonyl cyanide-m-chlorophenyl-hydrazone - DCCD N,Ndicyclohexylcarbodiimide - DCPIP Dichlorophenol indophenol - PMS Phenazine methosulfate  相似文献   

16.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   

17.
Moraxella sp. isolated from soil grows anaerobically on benzoate by nitrate respiration; nitrate or nitrite are obligatory electron acceptors, being reduced to molecular N2 during the catabolism of the substrate. This bacterium also grows aerobically on benzoate. 2. Aerobically, benzoate is metabolized by ortho cleavage of catechol followed by the beta-oxoadipate pathway. 3. Cells of Moraxella grown anaerobically on benzoate are devoid of ortho and meta cleavage enzymes; cyclohexanecarboxylate and 2-hydroxycyclohexanecarboxylate were detected in the anaerobic culture fluid. 4. [ring-U-14C]Benzoate, incubated anaerobically with cells in nitrate-phosphate buffer, gave rise to labelled 2-hydroxycyclohexanecarboxylate and adipate. When [carboxy-14C]benzoate was used, 2-hydroxycyclohexanecarboxylate was radioactive but the adipate was not labelled. A decarboxylation reaction intervenes at some stage between these two metabolites. 5. The anaerobic metabolism of benzoate by Moraxella sp. through nitrate respiration takes place by the reductive pathway (Dutton & Evans, 1969). Hydrogenation of the aromatic ring probably occurs via cyclohexa-2,5-dienecarboxylate and cyclohex-1-enecarboxylate to give cyclohexanecarboxylate. The biochemistry of this reductive process remains unclear. 6. CoA thiol esterification of cyclohexanecarboxylate followed by beta-oxidation via the unsaturated and hydroxy esters, would afford 2-oxocyclohexanecarboxylate. Subsequent events in the Moraxella culture differ from those occurring with Rhodopseudomonas palustris; decarboxylation precedes hydrolytic cleavage of the alicyclic ring to produce adipate in the former, whereas in the latter the keto ester undergoes direct hydrolytic fission to pimelate.  相似文献   

18.
A microbial mat from the Black Sea shelf was analyzed by a metagenomic approach. While the habitat and its microbial community are characterized by anaerobic methane oxidation, a 79 kb contiguous DNA sequence obtained from the same mat provided first evidence for the concomitant presence of the capacity for anaerobic benzoate degradation. Benzoyl-CoA is one central intermediate of anaerobic aromatic degradation, among others. Within a stretch of 31 kb, all genes required for the complete pathway of anaerobic benzoate degradation (catabolic island) were identified, including the four subunits of the key enzyme benzoyl-CoA reductase (bcrCBAD), which catalyzes the ATP-driven 2-electron reduction of the aromatic ring. Genes for a ketoacid:acceptor oxidoreductase (korABC) and a ferredoxin (fdx), which are required for generation of a suitable electron donor, were also detected. The majority of the identified catabolic gene products are most similar to their respective orthologs from the denitrifying freshwater bacterium Azoarcus evansii, and the genes are also similarly organized. Due to the lack of established markers, the phylogenetic affiliation of the source organism remains unclear. The presented findings indicate that the metabolic diversity of the Black Sea mat is wider than currently known and that probably other bacteria than those of the methane-oxidizing consortia contribute to aromatic degradation in this anoxic habitat.  相似文献   

19.
Abstract Anaerobic syntrophic bacteria degrade fatty acids and some aromatic compounds which are important intermediates in the degradation of organic matter in methanogenic environments. Several of the described syntrophic species produce poly-β-hydroxyalkanoate (PHA) suggesting that the synthesis and use of PHA is important in their physiology. In the fatty acid-degrading, syntrophic bacterium, Syntrophomonas wolfei , PHA is made during exponential phase of growth and used after growth has stopped and substrate levels are low. Altering the carbon to nitrogen ratio of the medium does not affect the amount of PHA made or its monomeric composition. It is hypothesized that PHA serves as an endogenous energy source for syntrophic bacteria when the concentrations of hydrogen or acetate are too high for the degradation of the growth substrate to be thermodynamically favorable. In S. wolfei , PHA is synthesized by two routes, the direct incorporation of 3-ketoacyl-coenzyme A (CoA) generated in β-oxidation without cleavage of a C-C bond, and by the condensation and subsequent reduction of two acetyl-CoA molecules. Genes that encode for the synthesis of PHA in S. wolfei have been cloned into Escherichia coli in order to understand the molecular mechanisms that regulate PHA synthesis.  相似文献   

20.
The microbial populations responsible for anaerobic degradation of phthalate isomers were investigated by enrichment and isolation of those microbes from anaerobic sludge treating wastewater from the manufacturing of terephthalic acid. Primary enrichments were made with each of three phthalate isomers (ortho-, iso-, and terephthalate) as the sole energy source at 37 degrees C with two sources of anaerobic sludge (both had been used to treat wastewater containing high concentrations of phthalate isomers) as the inoculum. Six methanogenic enrichment cultures were obtained which not only degraded the isomer used for the enrichment but also had the potential to degrade part of other phthalate isomers as well as benzoate with concomitant production of methane, presumably involving strictly syntrophic substrate degradation. Our 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that the predominant bacteria in the enrichment cultures were affiliated with a recently recognized non-sulfate-reducing subcluster (subcluster Ih) in the group 'Desulfotomaculum lineage I' or a clone cluster (group TA) in the class delta-PROTEOBACTERIA: Several attempts were made to isolate these microbes, resulting in the isolation of a terephthalate-degrading bacterium, designated strain JT, in pure culture. A coculture of the strain with the hydrogenotrophic methanogen Methanospirillum hungatei converted terephthalate to acetate and methane within 3 months of incubation, whereas strain JT could not degrade terephthalate in pure culture. During the degradation of terephthalate, a small amount of benzoate was transiently accumulated as an intermediate, indicative of decarboxylation of terephthalate to benzoate as the initial step of the degradation. 16S rRNA gene sequence analysis revealed that the strain was a member of subcluster Ih of the group 'Desulfotomaculum lineage I', but it was only distantly related to other known species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号