首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Purpose

The inclusion of land-use activities in life cycle assessment (LCA) has been subject to much debate in the LCA community. Despite the recent methodological developments in this area, the impacts of land occupation and transformation on its long-term ability to produce biomass (referred to here as biotic production potential [BPP]) — an important endpoint for the Area of Protection (AoP) Natural Resources — have been largely excluded from LCAs partly due to the lack of life cycle impact assessment methods.

Materials and methods

Several possible methods/indicators for BPP associated with biomass, carbon balance, soil erosion, salinisation, energy, soil biota and soil organic matter (SOM) were evaluated. The latter indicator was considered the most appropriate for LCA, and characterisation factors for eight land use types at the climate region level were developed.

Results and discussion

Most of the indicators assessed address land-use impacts satisfactorily for land uses that include biotic production of some kind (agriculture or silviculture). However, some fail to address potentially important land use impacts from other life cycle stages, such as those arising from transport. It is shown that the change in soil organic carbon (SOC) can be used as an indicator for impacts on BPP, because SOC relates to a range of soil properties responsible for soil resilience and fertility.

Conclusions

The characterisation factors developed suggest that the proposed approach to characterize land use impacts on BBP, despite its limitations, is both possible and robust. The availability of land-use-specific and biogeographically differentiated data on SOC makes BPP impact assessments operational. The characterisation factors provided allow for the assessment of land-use impacts on BPP, regardless of where they occur thus enabling more complete LCAs of products and services. Existing databases on every country’s terrestrial carbon stocks and land use enable the operability of this method. Furthermore, BPP impacts will be better assessed by this approach as increasingly spatially specific data are available for all geographical regions of the world at a large scale. The characterisation factors developed are applied to the case studies (Part D of this special issue), which show the practical issues related to their implementation.  相似文献   

2.

Purpose

The aim of this study is apply available methods to assess impacts on biodiversity from the land use caused by plantation grown radiata pine in New Zealand in a life cycle assessment framework. This is done both to quantify the impact as well as compare the results obtained by different methods.

Methods

Data on location and productivity for wood supply regions in New Zealand was assessed using three methods identified as relevant for the purpose. All data were related to a functional unit of 1 m3 of timber production.

Results and discussion

The results show both a significant difference in impact on biodiversity from land use in the different wood supply regions and a significant difference in the results from the three applied methods. Although some of the results obtained from the three methods were correlated, this was not consistent through all the results. The methodological variation emanates from the treatment of the characteristics of the wood supply regions and underlying assumptions, e.g. reference vegetation. Compared to a case study in Norway, the impact on biodiversity from plantation forestry in New Zealand is found to be relatively low following the applied methods and assumptions taken.

Conclusions

The study shows a significant variation in how impacts on biodiversity are assessed following different approaches. Research to harmonize methods to quantify impact on biodiversity is recommended, as well as exploring effects of different weighting of crucial aspects of biodiversity, such as rarity, abundance and species richness.  相似文献   

3.
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.  相似文献   

4.
《Ecology and evolution》2014,4(24):4701-4735
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.  相似文献   

5.
Purpose

The biosphere is progressively subjected to a variety of pressures resulting from anthropogenic activities. Habitat conversion, resulting from anthropogenic land use, is considered the dominant factor driving terrestrial biodiversity loss. Hence, adequate modelling of land use impacts on biodiversity in decision-support tools, like life cycle assessment (LCA), is a priority. State-of-the-art life cycle impact assessment (LCIA) characterisation models for land use impacts on biodiversity translate natural habitat transformation and occupation into biodiversity impacts. However, the currently available models predominantly focus on total habitat loss and ignore the spatial configuration of the landscape. That is, habitat fragmentation effects are ignored in current LCIAs with the exception of one recently developed method.

Methods

Here, we review how habitat fragmentation may affect biodiversity. In addition, we investigate how land use impacts on biodiversity are currently modelled in LCIA and how missing fragmentation impacts can influence the LCIA model results. Finally, we discuss fragmentation literature to evaluate possible methods to include habitat fragmentation into advanced characterisation models.

Results and discussion

We found support in available ecological literature for the notion that habitat fragmentation is a relevant factor when assessing biodiversity loss. Moreover, there are models that capture fragmentation effects on biodiversity that have the potential to be incorporated into current LCIA characterisation models.

Conclusions and recommendations

To enhance the credibility of LCA biodiversity assessments, we suggest that available fragmentation models are adapted, expanded and subsequently incorporated into advanced LCIA characterisation models and promote further efforts to capture the remaining fragmentation effects in LCIA characterisation models.

  相似文献   

6.
农业活动对生物多样性的影响   总被引:40,自引:3,他引:40  
农业生产活动如土地的农业利用、耕作、作物间套种植方式、放牧、农药化肥的使用以及农业动植物遗传改良(包括外来种引入)等是农业生产力提高的重要途径,同时也是影响生物多样性的重要因素之一。土地的不合理开发利用易导致生境破碎、生物多样性下降;大规模的机械耕作导致土壤动植物区系的变化,甚至某些物种的消失;农药(除草剂、杀虫剂等)的高度使用使非靶标动植物受到伤害;品种改良、外来种的引入以及远缘外源遗传物质的利用(如远缘杂交和DNA导入分子育种)在丰富了遗传多样性的同时导致农作物类型和品种的简单化、一些古老的地方种和农家种等传统资源丢失等;而一些合理的农业措施(间套作、实行有机农场等)将有利于生物多样性的保持。农业活动注重的是农业生产力的提高而往往忽视其对农业系统中野生动植物(包括有害和无害)的影响以及野生动植物在维持系统稳定和平衡的作用。本文论述农业活动对生物多样性的影响以及生物多样性保护对提高农业生产力的作用,启示人们采取合理的农业活动方式,合理管理有害生物,减少农业活动对生物多样性的负面影响。  相似文献   

7.
Species’ distributions, assemblage patterns and the processes influencing these are poorly understood, and urgently require study. Use of volunteers to collect data is becoming increasingly common in biodiversity research. We assess the effectiveness of volunteers sampling terrestrial savanna invertebrates in comparison to experienced researchers, and examine the potential contribution of volunteers to terrestrial invertebrate surveys. There were relatively few differences in the diversity sampled by 54 Earthwatch Institute volunteers when compared to expert researchers. The major difference was in the results from the less spatially constrained method, where experience (microhabitat selection) most affected results, and experienced researchers performed better both quantitatively (more species sampled) and qualitatively (more unique and rare species). For the more constrained and less subjective methods, our training enabled the volunteers to quickly equal the experienced experts. Volunteers’ experience in invertebrate research influenced both the researchers’ perceptions of volunteers’ capacity and the actual performance of the volunteers. This suggests that appropriate training for the methods used can help to improve volunteers’ success with the sampling. We demonstrated that volunteers collect valid data; for the most part they sample invertebrates as effectively as a trained researcher, and that using volunteers has enormous direct benefits in terms of volume of work accomplished. For invertebrate studies using volunteers, we recommend that the subjectivity of the method be minimised, that experience is compensated for by increasing volunteer effort (two volunteers = one researcher), and that there is close management of volunteers in the field to ensure ongoing data quality. Volunteers provide a valuable resource to researchers carrying out biodiversity surveys, but using volunteers to carry out a scientifically sound project is not an easy option, and should only be implemented when volunteers would make a meaningful contribution and enable an otherwise impossible project.  相似文献   

8.
To function effectively, the international biodiversity Clearing HouseMechanism (CHM), based on the Convention on Biological Diversity (CBD), needs tobe rooted at the regional and local levels. This article presents an example ofhow stakeholders of regional data and information can be encouraged to formnetworks linked to national biodiversity focal points (NFPs). We pay specialattention to exploiting the geospatial properties of biodiversity data andinformation, and demonstrate how data and information can best be filtered,classified and labelled to facilitate geographically based information retrievalon the Internet. The geocodability of bibliographic reports proved to be poor,indicating an urgent need to reconsider the geographical properties ofbiodiversity information under production. Also, it is useful to utilisenetworking processes with information from fields other than biodiversity wheninitiating the network. Finally, we present and discuss problems of integrityand interoperability of data, and also the process of biodiversity informationproduction from the point of view of general information theory and innovationsoffered by modern information technology.  相似文献   

9.
10.
In drylands livestock grazing is the main production activity, but overgrazing due to mismanagement is a major cause of biodiversity loss. Continuous grazing around water sources generates a radial gradient of grazing intensity called the piosphere. The ecological sustainability of this system is questionable and alternative management needs to be evaluated. We apply simple indicators of species response to grazing gradients, and we propose a novel methodological approach to compare community response to grazing gradients (double reciprocal analysis). We assessed degradation gradients of biodiversity under different management strategies in semiarid rangelands of the Monte desert (Argentina) by analyzing changes in vegetation, ants and small mammal richness and diversity, and variation due to seasonality. At the species level, we determined the trend in abundance of each species along the gradient, and the potential cross-taxa surrogacy. At the community level, the new methodological consists of assessing the magnitude of biodiversity degradation along different piospheres by comparing the slopes of linear functions obtained by the double reciprocal analysis. We found that most species showed a decreasing trend along the gradient under continuous grazing; while under rotational grazing fewer species showed a decreasing trend, and a neutral trend (no change in the abundance along the gradient of grazing intensity) was the most common. We found that vegetation cannot be used as a surrogacy taxon of animal response. Moreover, weak cross-taxa surrogacy was found only for animal assemblages during the wet season. The double reciprocal analysis allowed for comparison of multi-taxa response under different seasons and management types. By its application, we found that constrains in precipitation interacted with disturbance by increasing the negative effect of grazing on vegetation, but not on animal assemblages. Continuous grazing causes biodiversity loss in all situations. Rotational grazing prevents the occurrence of vegetation degradation and maintains higher levels of animal diversity, acting as an opportunity for biodiversity conservation under current scenarios of land use extensification. Our approach highlights the importance of considering multi-taxa and intrinsic variability in the analysis, and should be of value to managers concerned with biodiversity conservation.  相似文献   

11.
Comparative studies of large phylogenies of living and extinct groups have shown that most biodiversity arises from a small number of highly species-rich clades. To understand biodiversity, it is important to examine the history of these clades on geological time scales. This is part of a distinct 'phylogenetic expansion' view of macroevolution, and contrasts with the alternative, non-phylogenetic 'equilibrium' approach to the history of biodiversity. The latter viewpoint focuses on density-dependent models in which all life is described by a single global-scale model, and a case is made here that this approach may be less successful at representing the shape of the evolution of life than the phylogenetic expansion approach. The terrestrial fossil record is patchy, but is adequate for coarse-scale studies of groups such as vertebrates that possess fossilizable hard parts. New methods in phylogenetic analysis, morphometrics and the study of exceptional biotas allow new approaches. Models for diversity regulation through time range from the entirely biotic to the entirely physical, with many intermediates. Tetrapod diversity has risen as a result of the expansion of ecospace, rather than niche subdivision or regional-scale endemicity resulting from continental break-up. Tetrapod communities on land have been remarkably stable and have changed only when there was a revolution in floras (such as the demise of the Carboniferous coal forests, or the Cretaceous radiation of angiosperms) or following particularly severe mass extinction events, such as that at the end of the Permian.  相似文献   

12.

Goal, Scope and Background  

Land use and changes in land use have a significant impact on biodiversity. Still, there is no agreed upon methodology for how this impact should be assessed and included in LCA. This paper presents a methodology for including land use impact on biodiversity in Life Cycle Impact Assessment and provides a case example from forestry operations in Norway.  相似文献   

13.
This investigation involves the comparison of the diversity of understorey vegetation of four desert planted forests with the adjacent desert areas. Spatial and temporal variations in species composition and structure were compared, and alpha and beta diversities were compared for the field data collected from sampled sites. The diversity of native desert species decreased from 66% in desert areas to 44% of the total recorded plants inside the forests. Meanwhile, the percentage of agricultural weed species increased in forests to >twofold more than that recorded in desert areas. Plant communities in forest stands shared <50% of their species with adjacent vegetation in desert stands. The percentage of variation in species composition was >340% in some forests compared with the desert areas. Alpha diversity and β‐diversity were significantly higher in forest stands than in the desert. Spatial and temporal variations in species diversity were correlated with type of tree canopy and irrigation system. Planted forests had significant negative effects on the diversity of native desert shrubs and trees. Using flood irrigation and more spacing between trees might help in conserving the floristic diversity of desert shrubs and trees at the forest floor.  相似文献   

14.
Utility corridors are often thought to be disruptive to biodiversity because they cause habitat fragmentation that may lead to increases in predation, parasitism, disease transmittance and vagrant species while decreasing migration rates, gene flow and genetic diversity for interior species. Species with poor dispersal abilities, sedentary lifestyles, and specialized habitats have been thought to be potentially the most vulnerable to these effects. Terrestrial gastropods thus serve as a valuable system in which to investigate these impacts because they are among the poorest active dispersers in the animal kingdom. To document the impact of corridor formation on land snail biodiversity, a 75-year old powerline right-of-way in the eastern Upper Peninsula of Michigan was chosen for analysis. While terrestrial gastropod richness and abundance was significantly reduced for corridor as compared to adjacent control subsamples, with a 2/3 turnover in species composition, the corridor fauna is similar to nearby native grassland sites in terms of species composition, abundance distribution, and numbers and abundance of species of conservation concern. The fauna of control subsamples immediately adjacent to the corridor remained similar to other undisturbed sites in the region, with multiple species of conservation concern persisting at distances of only 30 m from the corridor. Thus, the net impact of corridor generation has been arguably positive: while the surrounding forest fauna has not been degraded, within the corridor the reduction of forest species has been compensated for by establishment of even rarer grassland species.  相似文献   

15.
Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature–diversity relationships in the deep sea. Our results from both present and past deep‐sea assemblages suggest that, when a wide range of deep‐sea bottom‐water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature–biodiversity relationship include the physiological‐tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on‐going global change and deep‐water warming may increase or decrease deep‐sea biodiversity. Predicted changes in deep‐sea temperatures due to human‐induced climate change may have more adverse consequences than expected considering the sensitivity of deep‐sea ecosystems to temperature changes.  相似文献   

16.
Forest canopies support diverse assemblages of free-living mites. Recent studies suggest mite species complementarity between canopy and terrestrial soils is as high as 80–90%. However, confounding variation in habitat quality and resource patchiness between ground and canopy has not been controlled in previous comparative studies. We used experimental litter bags with standardized microhabitat structure and resource quality to contrast the colonization dynamics of 129 mite species utilizing needle accumulations on the ground vs in the canopy of Abies amabilis trees in a temperate montane forest in Canada. Mite abundance and species richness per litter bag were five to eight times greater on the ground than in the canopy, and composition differed markedly at family-, genus-, and species-level. Seventy-seven species (57%) were restricted to either ground or canopy litter bags, but many of these species were rare (n<5 individuals). Of 49 ‘common’ species, 30.6% were entirely restricted to one habitat, which is considerably lower than most published estimates. In total, 87.5% of canopy specialists had rare vagrants on the ground, whereas only 51.9% of ground specialists had rare vagrants in the canopy. Canonical correspondence analysis of mite community structure showed high species turnover through time and a high degree of specialization for early-, mid-, and late-successional stages of litter decomposition, in both ground and canopy mites. In addition, distinct assemblages of ground-specialist mites dominated each elevation (800, 1000, and 1200 m), whereas few canopy-specialist mites had defined elevational preferences. This suggests that canopy mites may have greater tolerance for wide variation in environmental conditions than soil mites. The degree of species turnover between adjacent mountains also differed markedly, with 46.5% turnover of ground species, but 63.4% turnover of canopy species between the two montane areas. While ground and canopy assemblages are similar in total biodiversity, it appears that local mite richness (alpha diversity) is higher on the ground, whereas species turnover between sites (beta diversity) is higher in the canopy. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
基于NOAA PAL数据集的地表蒸散遥感估算方法   总被引:1,自引:0,他引:1  
基于NOAA AVHRR气象卫星长时间序列10 d合成的PAL数据集(分辨率8 km×8 km)以及地表能量平衡原理和“VI-Ts”方法,建立了地表蒸散的遥感估算方法,该方法不需要地面气象观测数据的支持,所需参数可直接从遥感数据反演或推算,并选择国际上著名的遥感蒸散模型——SEBS模型对新建模型进行了验证比较.结果表明:新建模型和SEBS模型模拟的地表蒸散值及其季节性变化趋势非常一致,说明新构建模型的模拟结果比较可靠,能够反映地表蒸散的实际情况.新建地表蒸散遥感估算模型可操作性强,为利用长时间序列的卫星遥感数据研究我国乃至全球地表蒸散的时空变化规律提供了一个新的途径.  相似文献   

18.
19.
Torsion is an important testing modality commonly used to calculate structural properties of long bones. However, the effects of size and geometry must be excluded from the overall structural response in order to compare material properties of bones of different size, age and species. We have developed a new method to analyze torsional properties of bones using actual cross-sectional information and length-wise geometrical variations obtained by micro-computed topographic (μCT) imaging. The proposed method was first validated by manufacturing three rat femurs through rapid prototyping using a plastic with known material properties. The observed variations in calculated torsional shear modulus of the hollow elliptical model of mid-shaft cross-section (Ekeland et al.), multi-prismatic model of five true cross-sections (Levenston et al.) and multi-slice model presented in this study were 96%, ?7% and 6% from the actual properties of the plastic, respectively. Subsequently, we used this method to derive relationships expressing torsional properties of rat cortical bone as a function of μCT-based bone volume fraction or apparent density over a range of normal and pathologic bone densities. Results indicate that a regression model of shear modulus or shear strength and bone volume fraction or apparent density described at least 81% of the variation in torsional properties of normal and pathologic bones. Coupled with the structural rigidity analysis technique introduced by the authors, the relationships reported here can provide a non-invasive tool to assess fracture risk in bones affected by pathologies and/or treatment options.  相似文献   

20.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号