首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined field experiment and modelling approach has been used to provide evidence that ants may be responsible for an observed lower patchiness and higher plant diversity in the neighbourhood of ant nests, within Mediterranean dry grasslands belonging to the phytosociological class Tuberarietea guttatae. The hypothesis was that seeds occurring in clumps may have a higher probability to be harvested than seeds having a scattered distribution. In order to test this hypothesis, four analysis steps were performed. First, pattern of seed production and dispersal of four species was recorded; two of them were more abundant next to ant nests (Tuberaria guttata, Euphorbia exigua), whereas the other two were more abundant away from ant nests (Bromus scoparius and Plantago bellardi). Second, a stochastic model was developed to simulate the observed dispersal patterns of each studied species. Third, 10 seed spatial arrangements in accordance to the distribution patterns created by the model were offered to ants and the location of predated seeds was recorded. Finally, the observed pattern of seed predation was matched to models performed by different distributions of probability. Results showed that the probability of being predated decreased as distance among seeds increased. This preference of ants for high concentration of food items holds down the dominant species sufficiently to allow the subordinates to survive, thus increasing diversity near nests. The observed higher frequency of small-seeded, small-sized, or creeping therophytes close to the ant nests can be therefore seen as an example of indirect myrmecophily.  相似文献   

2.
《Acta Oecologica》1999,20(5):509-518
In a deciduous forest, foraging ants collect elaiosome-bearing seeds and carry them to their nests. Some of the seeds reach the nest and are concentrated there. Others may be dropped by ants during transport. The dropped seeds enter the soil seed pool. However, they might be repeatedly removed by other ant individuals and carried again in the direction of the nest. Rates of seed dropping and repeated removals must be known to evaluate the effect of ant workers on dispersal distance of seeds. The rate of seed dropping is predicted to depend on size of seeds and of elaiosomes, both of which vary among plant species, and on the size of the ant workers. Mark-recapture experiments were used to evaluate dropping rates of seeds of five myrmecochorous and diplochorous plants (Chelidonium majus L., Asarum europaeum L., Viola matutina Klok., V. mirabilis L., V. hirta L.) during their transport by the ant Formica polyctena Foerst. In the series of species A. europaeumV. hirtaV. mirabilisCh. majusV. matutina, the dropping rate increased. Small workers dropped seeds of A. europaeum more often than did large ones, while seeds of V. hirta were dropped by ants of different size classes with the same frequency. Across species, dropping rates of seeds were negatively correlated with the rate at which ants removed them from the depot. The number of seeds which reach the nests is the other important parameter of seed dispersal. This parameter depends on dropping rates: seeds with lower dropping rates have higher chances of being deposited in nests. Diplochores usually produce many small seeds, which are characterised by low removal rates and high dropping rates during transport by ants. Obligate myrmecochores produce rather few large seeds, which have high removal rates and low dropping rates. To analyse the significance of seed dropping in the dispersal distance of seeds, a computer simulation based on two factors [(i) seed number produced by a plant; (ii) dropping rate of seeds] is proposed.  相似文献   

3.
Summary Of 36 plant species surveyed, 6 were significantly associated with nests of the desert seed-harvester ant Veromessor pergandei or Pogonomyrmex rugosus; two other plant species were significantly absent from ant nests. Seeds of two common desert annuals, Schismus arabicus and Plantago insularis, realize a 15.6 and 6.5 fold increase (respectively) in number of fruits or seeds produced per plant growing in ant nest refuse piles compared to nearby controls. Mass of individual S. arabicus seed produced by plants growing in refuse piles also increased significantly. Schismus arabicus, P. insularis and other plants associated with ant nests do not have seeds with obvious appendages attractive to ants. Dispersal and reproductive increase of such seeds may represent a relatively primitive form of ant-plant dispersal devoid of seed morphological specializations. Alternatively, evolution of specialized seed structures for dispersal may be precluded by the assemblage of North American seed-harvester ants whose workers are significantly larger than those ants normally associated with elaiosome-attached seed dispersal. Large worker size may permit consumption of elaiosome and seed.  相似文献   

4.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

5.
《Acta Oecologica》2006,29(3):213-220
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

6.
In desert ecosystems, harvester ants have been shown to be important granivores and seed dispersers. Because many desert plants exist as seeds in the ground for long periods, harvester ants may greatly influence plant population dynamics. In this study, we examine the effects of harvester ant nests on vegetation and soil properties in a desert ecosystem dominated by the dwarf shrub Rhanterium epapposum in Kuwait, north-eastern Arabia. Soil properties were greatly modified in the circular refuse zone around the nests of the harvester ants, with elevated levels of nutrients (except nitrogen) and organic matter. Plant species richness and productivity were also significantly enhanced in the refuse zone. The vast majority of species inhabiting this zone were desert annuals, but there is no evidence to suggest that the species involved have any distinct association with ant nests. Harvester ants therefore contribute substantially to small-scale spatial heterogeneity in this aridland plant community. It is also suggested that the significance of ant nests in providing favourable sites for plant growth is enhanced in drier years, when many species in off-nest sites may die prematurely due to drought. Furthermore, because ants occasionally abandon their nests and create new colonies, the addition of nutrient-rich patches to the landscape over time could represent an important mechanism for maintaining fertility of desert soils, possibly with long-term implications for plant biodiversity. Harvester ants can therefore be regarded as a key ecosystem engineer in this relatively undisturbed desert ecosystem of Kuwait.  相似文献   

7.
Red wood ants (Formica s.str.) are not prevalent in the forests of North America, but commonly occur in conifer and mixed conifer forests in northern Europe and Asia. In 1971, a European red wood ant species, Formica lugubris, was intentionally established in a 35‐year‐old predominantly mixed conifer plantation approximately 30 km north of QC, Canada. The purpose of its introduction was to evaluate the potential of this species as a biological control agent against conifer‐defoliating Lepidoptera species. This red wood ant introduction was monitored periodically for about 5 years after establishment, but its long‐term fate has not been reported. We visited this field site in 2005 and found that this species was well established, and we could locate some of the nests that resulted from the original release. We mapped and measured over 100 nests around the site of original release, which ranged from 5 cm in height to over 1 m. We estimated the population of introduced ants to have grown to over 8 million in the last 34 years. Significant clustering of nests suggests that these nests may be one supercolony. F. lugubris has become a dominant understory arthropod in this mixed forest, and is likely to have ecological impacts, including effects at the community and ecosystem level.  相似文献   

8.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

9.
Summary Seed dispersal by ants in Polygala vulgaris, Luzula campestris and Viola curtisii was studied in a primary dune valley on the island of Terschelling, The Netherlands. Normally developed seeds of all three species are taken by the ants into their nests. The ants show a distinct preference for the seeds of the specialized myrmecochore Polygala vulgaris, as compared with the two diplochorous species. It could be demonstrated that the elaiosome is the attractive part of the seed. Mapping studies demonstrate that the dispersal of the seeds by ants has a marked effect on the distribution pattern of the standing population of Polygala and Viola. Adult plants are often found on or close to the active nest mounds of all ant species present, while the growing sites of juvenile individuals and seedlings are practically restricted to the nest environment. The nests of two of the seed-dispersing ant species, viz., those of Lasius niger and Tetramorium caespitum, show differences in soil chemistry with the surroundings. The ant nests are significantly richer in some essential plant macronutrients, such as phosphate, potassium and nitrate. The advantage of myrmecochory in the dune area of Terschelling is discussed.  相似文献   

10.

Background

The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants.

Methodology/Principal Findings

We used empirical data and inverse modeling—a technique developed by plant ecologists to model seed dispersal—to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors.

Conclusions/Significance

We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens.  相似文献   

11.
Auld  Tony D.  Denham  A.J. 《Plant Ecology》1999,144(2):201-213
The role seed predators play in influencing the dynamics of plant populations has been little studied in Australia. The interaction of ant dispersal and seed predation on the soil seedbank in six shrubby species of Grevillea from the Sydney region of southeastern Australia was examined in selective exclusion experiments, seed array trials and placement of single seeds on the ground.Two distinct seed types in Grevillea were examined and different seed dispersal and post-dispersal seed predation patterns were associated with each: (a) seeds lacking an elaiosome were not attractive to ants and annual seed losses of between 82 and 95% were found in vegetation unburnt for greater than 8 years. Native rodents, Rattus fuscipes, and macropods, Wallabia bicolor, were responsible for these seed losses; (b) seeds with an elaiosome were rapidly handled by ants. Two functional types of ants were recognised. Most encounters were by ants that were small (Local) relative to seed size and these ants simply removed the elaiosome in situ or moved seeds only small distances (<20 cm). Some 0–24% of ant/seed encounters were by large (Removalist) ant species that were capable of moving seeds back to nests. In addition, Rattus fuscipes and Wallabia bicolor consumed at least 32–68% of seeds of Grevillea species with an elaiosome.Ants may reduce the overall levels of seed predation where seeds moved by Removalist ant species escape predation and are deposited in safe sites, hence allowing more seeds to reach the persistent soil seedbank. Mammals do not consume all seeds when ants are excluded, allowing for the potential for some seed escape from predation after seeds are discarded by Local ant species.  相似文献   

12.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

13.
Seed dispersal by ants in the semi-arid Caatinga of North-East Brazil   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km(2) area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. METHODS: Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. KEY RESULTS: Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12.8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38-84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. CONCLUSIONS: Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not to be restricted to regions of nutrient-impoverished soil or to fire-prone regions.  相似文献   

14.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

15.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

16.
Edge effects may lead to changes in mutualistic plant–animal interactions, such as seed dispersal, that are critical to plant regeneration. However, research into edge effects is neglected in the Brazilian cerrado, the largest neotropical savanna. We evaluated the consequences of edge effects in the cerrado for the regeneration of Erythroxylum pelleterianum (Erythroxylaceae), a shrub that benefits from seed dispersal by ants. We compared air temperature, relative humidity, and vapor pressure deficit, as well as the frequency and outcome of ant–diaspore interactions between cerrado edges and interiors. The inner portion of cerrado was likely to be moister than its borders, but seed production and germination did not differ between edge and interior of cerrado. Ants removed more seeds near fragment edges than at the interior. However, Myrmicinae ants dominated ant–fruit interactions at edges. These ants are likely to provide few benefits to the seeds. Seedlings of E. pelleterianum growing close to Ponerinae ant nests showed higher survival than seedlings growing away from nests in the interior of cerrado, but such effect disappeared near edges. Widespread seedling mortality due to a higher evaporative demand at edges may partially account for this effect. Furthermore, Ponerinae’s nests also showed a lower residence time near edges, decreasing possible benefits derived from ant colony activity such as nutrient enrichment and protection against insect herbivores. Edge effects could change the structure and dynamics of vegetation in cerrado fragments, due in part to the collapse of the mutualistic interactions demonstrated here.  相似文献   

17.
祝艳  王东 《生态学报》2014,34(17):4938-4942
蚂蚁是无脊椎动物中重要的种子传播者,蚂蚁散布影响植物种子的传播和扩散,进而会影响种苗的空间分布格局。在野外研究了蚂蚁觅食及搬运行为对阜平黄堇(Corydalis wilfordii Regel)和小花黄堇(C.racemosa(Thunb.)Pers.)种子散布的影响。结果显示,双针棱胸蚁和束胸平结蚁是两种植物种子的共同搬运者,前者行使群体募集,后者行使简单协作募集。在搬运阜平黄堇种子时,双针棱胸蚁在原地或搬运途中取食油质体后抛弃的种子约占种子总数的56%,而拖至蚁巢的种子约占种子总数的44%,平均搬运距离为(1.85±0.24)m,搬运效率为(43.8±7.5)粒/h;而束胸平结蚁将完整种子全部直接搬运至蚁巢,平均搬运距离为0.45 m,搬运效率为(7.3±2.2)粒/h。在搬运小花黄堇种子时,双针棱胸蚁和束胸平结蚁均将完整种子全部直接搬运至蚁巢,平均搬运距离分别为(6.27±4.40)m和(6.65±1.64)m,搬运效率分别为(34.2±6.5)粒/h和(10.6±3.2)粒/h。这说明行使群体募集的蚂蚁比行使简单协作募集的蚂蚁有较高的搬运效率,蚂蚁散布导致阜平黄堇和小花黄堇种子到达蚁巢的数量和搬运距离不同,而这种不同与相应搬运蚂蚁的觅食对策、搬运行为和种子特征有关。阜平黄堇种子比小花黄堇种子大,但阜平黄堇的油质体质量比小于小花黄堇的油质体质量比,讨论了种子特征对蚂蚁散布的影响。  相似文献   

18.
19.
Seed dispersal by ants (myrmecochory) is a widely distributed plant–animal interaction in many ecosystems, and it has been regarded as a generalized (multiple species) interaction in which specialization on specific ant partners is uncommon. In this paper, we demonstrate species-specific seed dispersal of spotted spurge (Chamaesyce maculata) by ants in Japan. C. maculata produces seeds from summer to autumn in Japan. The seeds produced in autumn are carried by two ant species, Tetramorium tsushimae and Pheidole noda. We performed laboratory experiments to investigate the fate of C. maculata seeds in the nests of T. tsushimae and P. noda. P. noda consumed the seeds in the nest and rarely carried seeds out of the nest, while T. tsushimae consumed only the seed coat, and subsequently carried the seeds out of the nest. Removal of the seed coat by T. tsushimae may increase seed survival by reducing their susceptibility to infection by fungi. We also observed ant responses to filter paper soaked with an aqueous extract of the seed coat. P. noda did not react to the filter paper, but T. tsushimae carried the filter paper into their nest. Analysis by high-pressure liquid chromatography revealed that the aqueous extract contained at least four sugars and one unknown substance. Myrmecochory has been regarded as a generalized interaction with specialization for specific ant partners uncommon. However, our study suggests there is a species-specific interaction in seed dispersal by ants in autumn-flowering individuals of C. maculata in Japan.  相似文献   

20.
Carex pedunculata is the first North American species of the Cyperaceae that is identified as a myrmecochore. Many morphological and phenological features of this species and its breeding system are interpreted as adaptive for seed dispersal by ants. In laboratory tests, workers of the ant species Aphaenogaster rudis carry the diaspores to the nest, eat the elaiosomes, carry larvae to the elaiosomes to feed, and deposit diaspores whose elaiosomes have been eaten with other nest debris. The achenes then germinate. Achenes will also germinate without any handling by ants. Workers will also transport diaspores with uneaten elaiosomes when the nest is disturbed. Greenhouse tests show that seedling growth is greatly inhibited if a diaspore remains near the parent plant and cohort seedlings. Field studies of natural populations identify rotting logs (the location of ant nests) as forest floor microsites for colonization of C. pedunculata and other myrmecochores. Ant nesting behavior may pattern much of the herb stratum. This species is self-compatible, and single seeds may start successful new populations. Three processes contribute to population growth: vegetative growth, germination of untransported diaspores, and germination of ant-transported diaspores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号