首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同高程短尖苔草对水位变化的生长及繁殖响应   总被引:1,自引:0,他引:1  
在淡水湿地生态系统中,水位通常是制约植被生长和繁殖动态的关键因素,进而对物种组成、群落演替和植被分布格局产生决定性影响。无性繁殖是洞庭湖湿地克隆植物适应环境胁迫的重要策略之一,以洞庭湖湿地典型克隆植物-短尖苔草(Carex brevicuspis C.B.Clarke)为对象,研究了不同分布高程(23.7 m和25.8 m)的植物对水位变化(0 cm,-15 cm,-30 cm)的生长和繁殖特征响应。结果表明:水位变化对不同分布高程分布短尖苔草的生长和克隆繁殖特征均产生显著影响(P0.05)。对高程区的短尖苔草而言,克隆繁殖特征如分株数、分株总生物量、芽数和芽生物量随水位的降低而增加,而对生长特征(株高及总生物量)无显著影响(P0.05),表明适当干旱有利于高程区苔草的克隆繁殖。对于低程区分布短尖苔草而言,水位变化对其生长特征有显著影响(P0.05),如株高和总生物量随着水位的降低而增加;分株数和总芽生物量等克隆繁殖特征则随水位的降低而减少,而水位对低程区短尖苔草的分株总生物量和总芽数影响不显著(P0.05)。因此,短尖苔草的克隆繁殖特征除受到水位的影响外,还受其分布高程的影响。可见,同一种短尖苔草因长期适应于不同生境而对相同的环境胁迫表现出了不同的生长繁殖策略,  相似文献   

2.
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides''s biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.  相似文献   

3.
We examined costs of sexual reproduction and clonal propagation, and their consequences for resource allocation in the clonal stoloniferous herb, Potentilla anserina, a typical pioneer species in disturbed areas. We used heavy-metal treatment in soil to create unfavourable growing conditions, because costs of reproduction are more likely to be expressed when resources are limited. We also studied whether heavy metals affect the plasticity of clonal growth form that enables the plants to avoid poor growing conditions. Ramets collected from field were grown in a greenhouse under the heavy-metal treatment consisting of a control and two levels of heavy-metals added in soil. Clonal propagation was costly in terms of total biomass of flowering ramets. Also the costs of sexual reproduction were detected in flowering ramets. Contrary to our predictions, the costs of flower production were visible in the control but not in the heavy-metal contaminated plants. Only the flowering ramets were able to produce longer stolons under heavy-metal stress, but the stolon biomass was not affected by heavy metals. Results indicate that clonal propagation and sexual reproduction may be costly for P. anserina. However, the costs are modified by heavy-metal contamination.Co-ordinating editor: J. Tuomi  相似文献   

4.
Asexual and sexual reproductive strategies in clonal plants   总被引:1,自引:0,他引:1  
Most plants can reproduce both sexually and asexually (or vegetatively), and the balance between the two reproductive modes may vary widely between and within species. Extensive clonal growth may affect the evolution of life history traits in many ways. First, in some clonal species, sexual reproduction and sex ratio vary largely among populations. Variation in sexual reproduction may strongly affect plant’s adaptation to local environments and the evolution of the geographic range. Second, clonal growth can increase floral display, and thus pollinator attraction, while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal. Geitonogamous pollination can bring a cost to plant fitness through both female and male functions. Some co-evolutionary interactions, therefore, may exist between the spatial structure and the mating behavior of clonal plants. Finally, a trade-off may exist between sexual reproduction and clonal growth. Resource allocation to the two reproductive modes may depend on environmental conditions, competitive dominance, life span, and genetic factors. If different reproductive modes represent adaptive strategies for plants in different environments, we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition, while clonal growth should be dominant in stable habitats. Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes. Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives. Translated from Acta Phytoecologica Sinica, 2006, 20(1): 174–183 [译自: 植物生态学报]  相似文献   

5.
The presence of cleistogamous and chasmogamous flowers on the same plant individual is considered to represent a “mixed” reproductive strategy. If a cleistogamous species also exhibits clonal propagation, then competition for limited resources is assumed to exist among the three reproductive modes. To date, however, the relationships and interactions among cleistogamous, chasmogamous, and clonal modes of reproduction have received little attention. In this study, we performed manipulative experiments to investigate the interactions among these different types of reproduction in the perennial herbaceous plant species Pseudostellaria heterophylla. The results showed that 66.4%–87.6% of individuals produce chasmogamous flowers and that the fruiting rates of these flowers in each surveyed population were between 23.5% and 77.4%. Furthermore, we found that 8.3% of the individuals of this species show inbreeding depression. We also detected significant negative correlations between the production of chasmogamous and cleistogamous flowers and between cleistogamous flower production and root tuber mass. However, chasmogamous flower production in an individual plant was found to have little influence on its subsequent clonal propagation. We propose that the plasticity of reproductive strategies observed in P. heterophylla is due to changes in the resource pool and resource allocation.  相似文献   

6.
Most plants can reproduce both sexually and asexually (or vegetatively),and the balance between the two reproductive modes may vary widely between and within species.Extensive clonal growth may affect the evolution of life history traits in many ways.First,in some clonal species,sexual reproduction and sex ratio vary largely among populations.Variation in sexual reproduction may strongly affect plant's adaptation to local environments and the evolution of the geographic range.Second,clonal growth can increase floral display,and thus pollinator attraction,while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal.Geitonogamous pollination can bring a cost to plant fitness through both female and male functions.Some co-evolutionary interactions,therefore,may exist between the spatial structure and the mating behavior of clonal plants.Finally,a trade-off may exist between sexual reproduction and clonal growth.Resource allocation to the two reproductive modes may depend on environmental conditions,competitive dominance,life span,and genetic factors.If different reproductive modes represent adaptive strategies for plants in different environments,we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition,while clonal growth should be dominant in stable habitats.Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes.Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives.  相似文献   

7.
The life cycles, programme of energy expenditure and allocation to reproduction, and the reproductive efforts of three wildAllium species, i.e.,A. Victorialis ssp.platyphyllum, A. monanthum, andA. Grayi, all native to Japan, were studied and compared. Furthermore, their adaptive strategies were discussed from the point of view of life history strategy. First, the reproductive systems, number of male and female gametes borne, and the number and size of propagules produced were critically investigated. In order to estimate the crude reproductive efficiency (sensu Harper and Ogden, 1970) of these species, sequential harvests were taken and the plants were divided into their component structures, dried and weighed. The quantity of dry weight allocated to sexual or vegetative reproduction was obtained by weighing the seeds, bulbils, or bulblets produced at the end of the season. A. Victorialis ssp.platyphyllum showed a rather low reproductive effort. However, the mean seed output per plant was 34.8±16.8 and the productivity appeared very constant every season. Thus, in the natural populations young plants are borne and recruited every season by means of sexual reproduction. A. monanthum was found to be characterized by annual type dry matter economy. The sexuality and reproductive systems of this species turned out to be extremely complex, and ten different reproductive types were distinguished. The exceedingly low efficiency of sexual reproduction in this species is apparently supplemented by vegetative propagation. The dry matter allocation to daughter bulbs at final harvest was very high; whereas the allocation to sexual reproduction was extremely low. InA. Grayi (a polyploid complex of 4X, 5X, and 6X), a surprisingly high amount of the total annual net assimilate is allocated to the bulbils and bulblets. On the other hand, sexual reproductive effort in this species is exceedingly low, even in obligate amphimictic plants. Thus, the recruitment of individuals in a population of this species appears to be largely dependent on vegetative reproduction. Considering the number of bulbils produced in the scape heads, their dispersibility, germinability, and rapid growth after sprouting, the bulbils evidently possess a function almost comparable to seeds. This species no doubt possesses an adapative strategy to unstable, open habitats exposed to frequent disturbances. It is concluded that the life history strategies of plants, as characterized here in this paper for three wildAllium species, have doubtlessly differentiated by adapting to the respective ecological backgrounds of their habitats.  相似文献   

8.
Populations of Allium vineale commonly include individuals with very different allocation patterns to three modes of reproduction: sexual flowers, aerially produced asexual bulbils, and belowground asexual offsets. If selection is currently acting to maintain these different allocation patterns there must be a genetic basis for variation in allocation to these three reproductive modes. In addition, negative genetic correlations between reproductive traits would imply evolutionary trade-offs among reproductive strategies. We evaluated the heritability of these allocation patterns by growing 16 clones from a single population in the greenhouse at two levels of fertilization. Bulb mass and the mass and number of bulbils, offsets, and flowers were used as response variables, in addition to the proportion allocated to each reproductive mode. We found evidence of substantial heritable variation in allocation to sexual reproduction and in allocation within the two modes of asexual reproduction, indicating high sensitivity of these allocation patterns to natural selection. We also found evidence of strong negative genetic correlations between bulbil and flower traits, as well as between bulbil and offset traits, with one group of genotypes allocating greater resources to aerial asexual bulbils and the second group allocating more resources to belowground asexual offsets and aerial flowers. Phenotypic plasticity in allocation to above- vs. belowground asexual reproduction and sexual vs. asexual aerial reproduction was limited, indicating that plants are unlikely to change reproductive mode in response to nutrient availability. Together, then, we have demonstrated strong heritability for, and trade-offs in, the reproductive allocation patterns within this plant population.  相似文献   

9.
 Aquatic plants are well known for their high degree of phenotypic plasticity in vegetative structures, particularly leaves. Less well understood is the extent to which their sexuality can be modified by environmental conditions. Here we investigate gender plasticity in the European clonal monoecious aquatic Sagittaria sagittifolia (Alismataceae) to determine how floral sex ratios may vary with plant size and inflorescence order. We sampled two populations from aquatic habitats in East Anglia, U.K. and measured a range of plant attributes including ramet size and the number of female and male flowers per inflorescence. The two populations exhibited similar patterns of phenotypic gender, despite contrasting patterns of total allocation to female and male flower number. Plants produced male-biased floral sex ratios but female flower number increased from the first to the second inflorescence whereas male flower number decreased. Size-dependent gender modification occurred in both populations, but the patterns of allocation to female flower production differed between the two populations. Our results are consistent with the view that monoecy is a sexual strategy that enables plants to adjust female and male allocation in response to changing environmental conditions. Received September 16, 2002; accepted October 23, 2002 Published online: March 20, 2003  相似文献   

10.
Clonal plants grow in diameter rather than height, and therefore competition among genets is likely to be symmetric and to result in smaller variation in size of genets than in non-clonal plants. Moreover, clonal plants can reproduce both sexually and vegetatively. We studied the effects of density on the size of rosettes and of clones, variation in the size of rosettes and of clones, and allocation to sexual and vegetative reproduction in the clonal herb Ranunculus reptans . We grew plants from an artificial population of R. reptans in 32 trays at two densities. After four months, differences in density were still apparent, although clones in the low-density treatment had on average 155% more rosettes and 227% more rooted rosettes than clones in the high-density treatment. The coefficient of variation of these measures of clone size was 15% and 83% higher, respectively, in the low-density treatment. This indicates that intraspecific competition among clones of R. reptans is symmetric and increases the effective population size. Rooted rosettes were larger and varied more in size in the low-density treatment. The relative allocation of the populations to sexual and to vegetative reproduction was 19% and 13% higher, respectively, in the high-density treatment. Moreover, seeds produced in the high-density treatment had a 24% higher mass and a 7% higher germination percentage. This suggests that with increasing density, allocation to sexual reproduction increases more than allocation to vegetative reproduction in R. reptans , which corresponds to the response of some other species with a spreading growth form but not of species with a compact growth form. We conclude that intraspecific competition is an important factor in the life-history evolution of R. reptans because intraspecific competition affects its clonal life-history traits and may affect evolutionary processes such as genetic drift and selection through its effect on the effective population size.  相似文献   

11.
高山植物繁殖策略的研究进展   总被引:4,自引:0,他引:4  
高山地区通常被认为是陆地上最为极端的生境之一,但却拥有许多形态特化的植物和较高的物种多样性。高山植物如何在严酷的环境中实现成功繁殖,这一问题倍受研究者们的关注。本文综合了国内外高山植物在资源分配、花形态对非生物环境因子的响应、动物传粉及其适应机制、果实和种子及克隆繁殖等繁殖策略方面的文献。为应对低温多雨雪的恶劣环境,一些高山植物采取花向日性、花冠闭合及花序保温结构等繁殖策略。高山植物的传粉者类群也发生了改变,主要为蜂类和蝇类。熊蜂(Bombusspp.)传粉的高效性,减少了高山环境对植物传粉造成的不利影响。当传粉者不可得时,植物不仅通过延迟自交和自助自交等机制来提供繁殖保障,还借助克隆繁殖及其他传粉机制(风媒或风虫媒)来维持种群的繁衍。依赖动物传粉的高山植物,可以采取增加繁殖构件的资源分配、加大"广告"投入以及较大的花展示或较长的花寿命来提高传粉者的拜访几率,以及借助泛化的花结构和选择合适的开花时间等策略来提高繁殖成功率。此外,大部分高山植物产生干果且具有持久的种子库,有利于种子的传播以及种子寻找萌发及幼苗生长的最佳外界环境。在今后的研究中,可着重探讨以下几个问题:(1)非生物环境因子对花形态的选择;(2)季节变化与繁殖策略;(3)群落水平上植物与传粉者的关系;(4)高山生态系统对全球变暖的响应。  相似文献   

12.
The reproductive biology of the sympatric species Gagea lutea and Gagea spathacea was analyzed morphologically and by resource allocation measurements. Both taxa reproduce vegetatively by bulbils. The hexaploid G. lutea regularly forms seeds, but flowering plants cease to produce bulbils. Seed set was never observed in nonaploid G. spathacea which does not stop vegetative reproduction when flowering. In this species, the pollen contains a high proportion of non-viable grains. Already sterile plants invest more resources (per cent of total nitrogen) into bulbils than G. lutea (10.9 vs. 5.9%). For flowering plants, the respective values are 6.1% (flowers) plus 18.4% (bulbils) for G. spathacea versus 14.8% (flowers only) for G. lutea. G. spathacea lost the ability to reproduce sexually and relies solely on vegetative reproduction. This seems to require the breakdown of the switch mechanism between the bulbil and flower formation (as in G. lutea) and a higher net investment in reproduction, hampering individual growth.  相似文献   

13.
The relationship between sexual reproduction and clonal growth in clonal plants often shows up at the ramet level. However, only a few studies focus on the relationship at the genet level, which could finally account for evolution. The sexual reproduction and clonal growth of Ligularia virgaurea, a perennial herb widely distributed in the alpine grasslands of the Qinghai‐Tibetan Plateau of China, were studied under different competition intensities and light conditions at the genet level through a potted experiment. The results showed that: (1) sexual reproduction did not depend on density or light, and increasing clonal growth with decreasing density and increasing light intensity indicated that intraspecific competition and light intensity may affect the clonal life history of L. virgaurea; (2) both sexual reproduction and clonal growth show a positive linear relationship with genet size under different densities and light conditions; (3) a threshold size is required for sexual reproduction and no evidence of a threshold size for clonal growth under different densities and light conditions; (4) light level affected the allocation of total biomass to clonal and sexual structures, with less allocation to clonal structures and more allocation to sexual structures in full sunlight than in shade; (5) light determined the onset of sexual reproduction, and the genets in the shade required a smaller threshold size for sexual reproduction to occur than the plants in full sunlight; and (6) no evidence was found of trade‐offs between clonal growth and sexual reproduction under different densities and light conditions at the genet level, and the positive correlation between two reproductive modes indicated that these are two integrated processes. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness.  相似文献   

14.
For plants that rely on animals for pollination, the ability to attract the animals to their flowers can be a crucial component of fitness. A large number of studies have documented pollinators to be important selective agents driving the evolution of flower size and correlated traits on a large scale. In this paper, we studied variations of reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. The results showed significant variations of floral size, seed mass per fruit and sex allocation (male/female mass ratio) between different habitats, where floral size and seed mass was not explained fully by variation of plant size among habitats. It suggested that other factors unrelated to plant size might also influence floral variation. However, in our manipulated experiment, it showed no effects of manipulated floral size not only on visit rate of effective pollinators (bees and flies) but also on female success (seed set, seed mass per fruit), irrespective of flower density. Consequently, we could not conclude that the variation of floral size in T. ranunculoides was due to phenotypic plasticity, or natural selection. But if selection occurred, it should not be mediated by pollinators. It was likely that variation of sex allocation between habitats lead to changes of flower or corolla size, because plant invested much less to male function (female-biased sex allocation and larger single seed mass) in shade habitat (bottom of bush) than other exposed habitats, to gain higher fitness. In addition, high-floral density in T. ranunculoides had a negative effect on service of main pollinator (bees) and female success. This situation would influence the strength of selection on floral size.  相似文献   

15.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

16.
Summary We examined the influence of differential reproductive frequency between the sexes on tertiary (phenotypic) sex ratios in the the dioecious tree Nyssa sylvatica (Nyssaceae). Reproduction was evaluated in relation to sex, size and canopy exposure using flowering data collected from 1229 marked trees over a four year period. For subsets of each population we used data on flower number, fruit crop size, fruit/flower ratios, and individual flower and fruit mass to compare biomass invested in reproductive structures of males and females. We also examined seasonal changes in stem nitrogen and soluble carbohydrate content in relation to flower and fruit production for trees of each sex. Our results indicate that: 1) Male-biased tertiary sex ratios could be explained by more frequent reproduction by male trees; 2) Estimated secondary sex ratios based on sums of all known males and females were not significantly different from 1:1; 3) Flowering frequency of males and females was significantly related to plant size (DBH) and exposure of the canopy to light; 4) Estimtes of reproductive biomass allocation ranged from 1.36 to 10.8 times greater for females relative to males; 5) Flower production was related to stem nutrient status for both sexes, but nutrient depletion and its effect on subsequent flowering was much more pronounced for female trees. We conclude that less frequent flowering by female trees may result from depletion of stored reserves, and that differential flowering frequency in N. sylvatica may ultimately reduce apparent sexual differences in the costs of reproduction.  相似文献   

17.
C. M. Mabry  P. W. Wayne 《Oecologia》1997,111(2):225-232
A number of studies have shown that under some conditions plants may fully or partially compensate for leaf tissue loss; however, the mechanisms underlying compensatory responses are not well understood. Previous work demonstrated that the annual herb Abutilon theophrasti fully compensated for 75% defoliation, but only when grown in the absence of stem competition. We examined potential mechanisms of compensatory response and how they are influenced by resource limitation (i.e., competition for light). Full compensation for these annual plants was defined as equal final reproductive output in defoliated and control plants. In the current study we observed substantial compensation in defoliated plants growing at low density, despite losing 75% of leaf area prior to the onset of flowering. Plant responses associated with compensation included (1) increased reproductive efficiency, which may in turn may have resulted from increased canopy light penetration and transient increases in leaf-level photosynthetic rates; (2) greater allocation to reproduction (RA); (3) changes in biomass allocation from roots to shoots; (4) lower leaf longevity, and (5) increased percent fruit set. Although some of these responses were also observed in defoliated plants grown at high density, the inability of high-density plants to compensate appeared to result from competition for light; these plants delayed reproduction and continued to produce new leaves late in the growing season after low-density, defoliated plants had shifted allocation of resources to reproduction. Received: 20 June 1996 / Accepted: 12 February 1997  相似文献   

18.
The relative importance of subterranean versus aboveground insect damage to plants is not well understood. In particular, the simultaneous effects of above- and belowground herbivory, and the importance of highly variable abiotic factors such as rainfall, have received little attention in diverse natural ecosystems. We investigated the influence of both above- and belowground herbivory on Lupinus nanus (Fabaceae), an annual plant native to coastal California. A number of insect species damage L. nanus aboveground, and a weevil larva consumes nodules belowground. To manipulate herbivory in the field, we employed a combination of insecticides and simulated herbivory during two different years. In 1997, simulated belowground damage reduced L. nanus survival, and insecticide application to roots increased seed production and seed mass. By contrast, in 1998, only aboveground folivory significantly reduced L. nanus reproduction, and, in combination, above- and belowground insecticides did not affect flower or seed number relative to controls. A growth chamber experiment conducted in the absence of herbivory revealed that the aboveground insecticide marginally reduced flower production and the belowground insecticide marginally increased flower production compared to controls; these non-target effects made our field experiments for aboveground herbivory conservative. Finally, ambient levels of herbivory differed among years (1997, 1998, and 2000), which varied greatly in rainfall due to the effects of El Nino. The results suggest that the impacts of herbivores are temporally variable and that abiotic factors, particularly those related to large-scale changes in weather patterns, may be more important than insect herbivory to L. nanus in some years. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Drought and competition affect how morphological and physiological traits are expressed in plants. California plants were previously found to respond less negatively to resource limitation compared to invasive counterparts. In a glasshouse in Santa Cruz, CA, USA, we exposed five native California C3 grassland species to episodic drought and competition (via five locally invasive species). We hypothesized that leaf morphology would be more affected by competition, and leaf photosynthetic gas exchange more so by drought, consistent with optimal partitioning and environmental filter theories. We expected that traits would exhibit trade‐offs along a spectrum for resource conservatism versus acquisition. Bromus carinatus had greater photosynthetic recovery, while Diplacus aurantiacus had lower percent loss of net assimilation (PLA) and intrinsic water‐use efficiency (iWUE) during drought and competition simultaneously compared to just drought. Stipa pulchra and Sidalcea malviflora gas exchange was unaffected by drought, and leaf morphology exhibited drought‐related adjustments. Lupinus nanus exhibited trait adjustments for competition but not drought. Functional traits sorted onto two principal components related to trade‐offs for resource conservatism versus acquisition, and for above‐ versus belowground allocation. In summary, morphological traits were affected by competition and drought, whereas physiological traits, like leaf gas exchange, were primarily affected by drought. The grassland plants we studied showed diverse responses to drought and competition with trait trade‐offs related to resource conservatism versus acquisition, and for above‐ versus belowground allocation consistent with optimal partitioning and environmental filter theories. Diplacus aurantiacus experienced competitive release based on greater iWUE and lower PLA when facing drought and competition.  相似文献   

20.
The relative importance of sexual and clonal reproduction for population growth in clonal plants is highly variable. Clonal reproduction is often more important than sexual reproduction but there is considerable interspecific variation and the importance of the two reproductive modes can change with environmental conditions. We carried out a demographic study on the woodland strawberry (Fragaria vesca), a widespread clonal herb, at 12 sites in Switzerland during 2 years. Study sites were selected in two different habitats, i.e., forest and forest edge. We used periodic matrix models to estimate annual population growth rates and carried out prospective analyses to identify life cycle components that influence population growth rates most. Retrospective analyses were applied to study how the two different habitats affected population dynamics. Furthermore, we tested whether trade-offs between sexual and clonal reproduction occurred. There were large differences in annual population growth rates between sites and large within-site differences between years. Results of the prospective analyses clearly indicate that clonal reproduction is the dominant reproductive pathway whereas sexual reproduction is rather insignificant for population growth. Compared to forest habitats, forest edge habitats had higher population growth rates in the first year but smaller growth rates in the second year. We attribute these differing habitat effects to different water availabilities during consecutive years. No trade-offs between sexual and clonal reproduction were found. In conclusion, population growth of F. vesca relies heavily on clonal reproduction. Furthermore, reproduction and survival rates of F. vesca depend highly on spatio-temporal variation of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号