首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lazcano  Cristina  Deol  Anoop S.  Brummell  Martin E.  Strack  Maria 《Plant and Soil》2020,454(1-2):299-310
Plant and Soil - Through agriculture and industry, humans are increasing the deposition and availability of nitrogen (N) in ecosystems worldwide. Carbon (C) isotope tracers provide useful insights...  相似文献   

2.

Background and aims

Ecosystem respiration (R eco ) is controlled by thermal and hydrologic regimes, but their relative importance in defining the CO2 emissions in peatlands seems to be site specific. The aim of the paper is to investigate the sensitivity of R eco to variations in temperature and water table depth (WTD) in a wet, geogenous temperate peatland with a wide variety of vegetation community groups.

Methods

The CO2 fluxes were measured using chambers. Measurements were made at four microsites with different vegetation communities and peat moisture and temperature conditions every 3 to 4 weeks during the period 2008–2009, 2 years with contrasting WTD patterns. Models were used to examine the relative response of each microsite to variations in peat temperature and WTD and used to estimate annual total R eco .

Results

Temporal variations in R eco were strongly related to peat temperature at the 5 cm depth. However, two of the microsites did not show any significant change in this relationship while two others showed contrasting responses including an increase and decrease in temperature sensitivity with deeper WTD. Average R eco varied among the microsites and tended to be greatest for those with greatest leaf area which also positively correlated with deeper WTD, ash content and degree of peat decomposition at 20 cm. A combined temperature and WTD model explained up to 94 % of the temporal variation in daily average R eco and was used to show that on an annual basis, R eco was between 5 and 18 % greater in the warmer year with deeper WTD.

Conclusion

Microsite-specific responses were related to differences in vegetation and peat characteristics among microsites. R eco may have remained insensitive to WTD variations at one microsite due to the dominance of autotrophic respiration from abundant sedge biomass. At a Sphagnum-dominated microsite, a lack of response may have been due to relatively small variations in WTD that did not greatly influence microbial respiration or due to offsets between decreasing and increasing respiration rates in near-surface and deeper peat. The microsite with the most recalcitrant peat had reduced R eco sensitivity to temperature under more aerobic conditions while another microsite showed the opposite response, perhaps due to less nutrient availability during the wet year. Ultimately, micro-site specific models with both soil temperature and WTD as explanatory variables described temporal variations in R eco and highlighted the significant spatial variations in respiration rates that may occur within a single wetland.  相似文献   

3.
Peatlands are important reservoirs of carbon (C) but our understanding of C cycling on cutover peatlands is limited. We investigated the decomposition over 18 months of five types of plant litter (Calluna vulgaris, Eriophorum angustifolium, Eriophorum vaginatum, Picea sitchensis and Sphagnum auriculatum) at a cutover peatland in Scotland, at three water tables. We measured changes in C, nitrogen (N) and phosphorus (P) in the litter and used denaturing gradient gel electrophoresis to investigate changes in fungal community composition. The C content of S. auriculatum litter did not change throughout the incubation period whereas vascular plant litters lost 30-40% of their initial C. There were no differences in C losses between low and medium water tables, but losses were always significantly less at the high water table. Most litters accumulated N and E. angustifolium accumulated significant quantities of P. C, N and P were significant explanatory variables in determining changes in fungal community composition but explained <25% of the variation. Litter type was always a stronger factor than water table in determining either fungal community composition or turnover of C, N and P in litter. The results have implications for the ways restoration programmes and global climate change may impact upon nutrient cycling in cutover peatlands.  相似文献   

4.
Emission of CO2 from tropical peatlands is an important component of the global carbon budget. Over days to months, these fluxes are largely controlled by water table depth. However, the diurnal cycle is less well understood, in part, because most measurements have been collected daily at midday. We used an automated chamber system to make hourly measurements of peat surface CO2 emissions from chambers root‐cut to 30 cm. We then used these data to disentangle the relationship between temperature, water table and heterotrophic respiration (Rhet). We made two central observations. First, we found strong diurnal cycles in CO2 flux and near‐surface peat temperature (<10 cm depth), both peaking at midday. The magnitude of diurnal oscillations was strongly influenced by shading and water table depth, highlighting the limitations of relying on daytime measurements and/or a single correction factor to remove daytime bias in flux measurements. Second, we found mean daily Rhet had a strong linear relationship to the depth of the water table, and under flooded conditions, Rhet was small and constant. We used this relationship between Rhet and water table depth to estimate carbon export from both Rhet and dissolved organic carbon over the course of a year based on water table records. Rhet dominates annual carbon export, demonstrating the potential for peatland drainage to increase regional CO2 emissions. Finally, we discuss an apparent incompatibility between hourly and daily average observations of CO2 flux, water table and temperature: water table and daily average flux data suggest that CO2 is produced across the entire unsaturated peat profile, whereas temperature and hourly flux data appear to suggest that CO2 fluxes are controlled by very near surface peat. We explore how temperature‐, moisture‐ and gas transport‐related mechanisms could cause mean CO2 emissions to increase linearly with water table depth and also have a large diurnal cycle.  相似文献   

5.
Effect of water table on greenhouse gas emissions from peatland mesocosms   总被引:2,自引:0,他引:2  
Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from small-scale chamber measurements it is important to both quantify and understand the processes underlying this spatial variability. Here we carried out a mesocosm study which allowed a comparison to be made between different microtopographic features and vegetation communities, in response to conditions of both static and changing water table. Three mesocosm types (hummocks?+?Juncus effusus, hummocks?+?Eriophorum vaginatum, and hollows dominated by moss) were subjected to two water table treatments (0–5 cm and 30–35 cm depth). Measurements were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil water solute concentrations. After 14 weeks the high water table group was drained and the low water table group flooded. Measurement intensity was then increased to examine the immediate response to change in water table position. Mean CO2, CH4 and N2O exchange across all chambers was 39.8 μg m?2 s?1, 54.7 μg m?2 h?1 and ?2.9 μg m?2 h?1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and water table for CH4 emissions. In contrast to many previous studies, we found that the presence of aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and N2O emissions occurred within 1–2 days of switching the water table treatments. This pulsing could potentially lead to significant underestimation of landscape annual GHG budgets when widely spaced chamber measurements are upscaled.  相似文献   

6.
Changes of water table position influence carbon cycling in peatlands, but effects on the sources and sinks of carbon are difficult to isolate and quantify in field investigations due to seasonal dynamics and covariance of variables. We thus investigated carbon fluxes and dissolved carbon production in peatland mesocosms from two acidic and oligotrophic peatlands under steady state conditions at two different water table positions. Exchange rates and CO2, CH4 and DOC production rates were simultaneously determined in the peat from diffusive-advective mass-balances of dissolved CO2, CH4 and DOC in the pore water. Incubation experiments were used to quantify potential CO2, CH4, and DOC production rates. The carbon turnover in the saturated peat was dominated by the production of DOC (10–15 mmol m–2 d–1) with lower rates of DIC (6.1–8.5 mmol m–2 d–1) and CH4 (2.2–4.2 mmol m–2 d–1) production. All production rates strongly decreased with depth indicating the importance of fresh plant tissue for dissolved C release. A lower water table decreased area based rates of photosynthesis (24–42%), CH4 production (factor 2.5–3.5) and emission, increased rates of soil respiration and microbial biomass C, and did not change DOC release. Due to the changes in process rates the C net balance of the mesocosms shifted by 36 mmol m–2 d–1. According to our estimates the change in C mineralization contributed most to this change. Anaerobic rates of CO2 production rates deeper in the peat increased significantly by a factor of 2–3.5 (DOC), 2.9–3.9 (CO2), and 3–14 (CH4) when the water table was lowered by 30 cm. This phenomenon might have been caused by easing an inhibiting effect by the accumulation of CO2 and CH4 when the water table was at the moss surface.  相似文献   

7.
Microbial activity and enzymic decomposition processes were followed during a field-based experimental lowering of the water table in a Welsh peatland. Respiration was not significantly affected by the treatment. However, the enzymes sulphatase, -glucosidase and phosphatase were stimulated by between 31 and 67% upon water table drawdown. A further enzyme, phenol oxidase, was not significantly affected. The observation of elevated enzyme activities without an associated increase in microbial respiratory activity suggests that drought conditions influence peatland mineralisation rates through a direct stimulation of existing enzymes, rather than through a generalised stimulation of microbial metabolism (with associated de-novo enzyme synthesis). Hydrochemical data suggest that the stimulation may have been caused by a reduction in the inhibitory action of iron and phenolics in the peat pore waters. Overall, the findings support the recent hypothesis that drier conditions associated with climate change could stimulate mineralisation within wetlands. ei]R Merckx  相似文献   

8.
Northern peatland water table position is tightly coupled to carbon (C) cycling dynamics and is predicted to change from shifts in temperature and precipitation patterns associated with global climate change. However, it is uncertain how long-term water table alterations will alter C dynamics in northern peatlands because most studies have focused on short-term water table manipulations. The goal of our study was to quantify the effect of long-term water table changes (~80 years) on gaseous C fluxes in a peatland in the Upper Peninsula of Michigan. Chamber methods were utilized to measure ecosystem respiration (ER), gross primary production (GPP), net ecosystem exchange (NEE), and methane (CH4) fluxes in a peatland experiencing levee induced long-term water table drawdown and impoundment in relation to an unaltered site. Inundation raised water table levels by approximately ~10 cm and resulted in a decrease in ER and GPP, but an increase of CH4 emissions. Conversely, the drained sites, with water table levels ~15 cm lower, resulted in a significant increase in ER and GPP, but a decrease in CH4 emissions. However, NEE was not significantly different between the water table treatments. In summary, our data indicates that long-term water table drawdown and inundation was still altering peatland gaseous C fluxes, even after 80 years. In addition, many of the patterns we found were of similar magnitude to those measured in short-term studies, which indicates that short-term studies might be useful for predicting the direction and magnitude of future C changes in peatlands.  相似文献   

9.
水深梯度下湿地植被空间分布与生态适应   总被引:21,自引:0,他引:21  
谭学界  赵欣胜 《生态学杂志》2006,25(12):1460-1464
采用模糊数学排序方法对黄河三角洲国家级自然保护区不同水深梯度下芦苇湿地植被进行了.研究,揭示了水深对植被空间分布的影响。结果表明,不同水深梯度下植物生境和群落类型都表现出较大差异,水深-30~40cm,为水陆过渡地带,旱生、水生植物并存,物种最为丰富,该段水深上植被盖度最大;水深在-30-50cm,由于地下水深较低,该段水深是研究区盐碱化程度最大处;水深低于-50cm时,地表较为干旱,盐碱化程度有所降低,植被类型被耐干旱植被代替。不同水深梯度影响了土壤水分、空气和土壤的生物、物理、化学过程,引起植被生长环境中土壤水分、盐碱化程度的改变,进而对植被空间分布和植被生态特征产生影响。  相似文献   

10.
It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ?), and water-extractable ortho-phosphorus (ext-PO4 3?) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 ? concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3? concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.  相似文献   

11.
Abstract. The peatlands of Atlantic Canada are classified in four plant alliances, consisting of 10 plant associations. The four plant alliances comprise the dry bog communities (Kalmio-Cladonion Wells 1981), wet bog communities (Scirpo-Sphagnion Wells 1981), hummock and ridge communities of slope and string fens (Betulo-Sphagnion Wells all. nov.), and poor, intermediate and rich fen plant communities (Scirpo-Myricion Wells 1981). Distribution maps are presented for relevés in each of the 10 associations. Based on species distributions, floristic regions are defined for peatlands in Atlantic Canada. Nutritional characteristics are also described for each plant association. pH and total soil concentrations of calcium, nitrogen and iron proved reliable in separating bog from fen. A boundary between ombrotrophic peatlands and minerotrophic peatlands is suggested, based on a soil pH of 4.0, total soil concentrations of 3.0 mg g?1 Ca, 4.0 mg g?1 Fe, 13.0 mg g?1 N and a Ca/Mg ratio of 2.5. Comparisons between the syntaxa for peatlands in Atlantic Canada and those in Europe are discussed for higher taxa. The possibility of establishing a new order (Chamaedaphno-Scirpetalia Wells ord. nov.) for peatlands in Atlantic Canada is also discussed.  相似文献   

12.
Question: What are the relative influences of environment and space in structuring the plant composition in a peatland complex? Location: Lakkasuo, southern boreal zone, Finland. Method: We used principal coordinates of neighbour matrices (PCNM) to model spatial structures in the plant composition of a peatland complex comprising ombrotrophic and minerotrophic, open and forested areas. We used redundancy analyses (RDA) and variation partitioning to assess the relative influences of chemical variables (peat and water characteristics), physical variables (hydrology, soil properties, shade), as well as broad‐scale (>350 m) and medium‐scale (100–350 m) spatial structures on vegetation assemblages. Results: We identified five different significant spatial patterns circumscribing (1) the minerotrophic–ombrotrophic gradient; (2) dry ombrotrophic and wet minerotrophic areas; (3) open and shaded areas; (4) dry open/shaded and wet patches within the ombrotrophic areas; and (5) dry open patches and dry forested patches. With spatial structures and environmental variables, we were able to model 30% of the variability in plant composition in the peatland complex, 13% of which was attributable to spatial structures alone. Conclusions: We demonstrated that in the peatland complex, the spatial dependence processes were more important at the broadest scale, and found that patterns at a medium scale might reflect finer‐scale patterns that were not investigated here. Spatial autocorrelation in vegetation composition in the peatland complex appeared to be driven by Sphagnum species. Our results emphasize that spatial modelling should be routinely implemented in studies looking at species composition, since they significantly increase the explained proportion of variance.  相似文献   

13.
Boreal peatlands have significant emissions of non-methane biogenic volatile organic compounds (BVOCs). Climate warming is expected to affect these ecosystems both directly, with increasing temperature, and indirectly, through water table drawdown following increased evapotranspiration. We assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs and other VOCs were sampled using a conventional chamber technique, collected on adsorbent and analyzed by GC–MS. Carbon emitted as BVOCs was less than 1% of the CO2 uptake and up to 3% of CH4 emission. Water table drawdown surpassed the direct warming effect and significantly decreased the emissions of all BVOC groups. Only isoprene emission was significantly increased by warming, parallel to the increased leaf number of the dominant sedge Eriophorum vaginatum. BVOC emissions from peat soil were higher under the control and warming treatments than water table drawdown, suggesting an increased activity of anaerobic microbial community. Our results suggest that boreal peatlands could have concomitant negative and positive radiative forcing effects on climate warming following the effect of water table drawdown. The observed decrease in CH4 emission causes a negative radiative forcing while the increase in CO2 emission and decrease in reactive BVOC emissions, which could reduce the cooling effect induced by the lower formation rate of secondary organic aerosols, both contribute to increased radiative forcing.  相似文献   

14.
曾嘉  陈槐  刘建亮  杨随庄  严飞  曹芹  杨刚 《生态学报》2022,42(2):625-634
酚类物质作为泥炭地重要的碳分解抑制剂,植被作为泥炭地关键的碳输入来源,它们在土壤碳(可溶性有机碳(DOC)等)周转过程中都发挥着重要作用。然而,目前关于植被群落结构、酚类物质以及DOC含量对水位波动的响应存在较大争议。因此,为明确泥炭地水位下降对植被群落结构、酚类物质以及DOC含量的影响并探明三者间的潜在联系,以若尔盖高原泥炭地作为研究对象,选取红原县日干乔地区3处不同地下水位泥炭地(水位由高到低依次为S1(-1.9 cm)、S2(-10 cm)、S3(-19 cm)样地),调查不同水位条件下植被群落结构特征,并探究酚类物质及土壤碳含量对水位波动的响应。结果表明:(1)从S1到S3样地水位下降促进土壤DOC显著增加(P<0.05),土壤总碳从S1到S2显著增加(P<0.05),而从S2到S3无显著差异;(2)泥炭地水位下降促使禾本科(发草Deschampsia cespitosa)、莎草科(木里薹草Carex muliensis、乌拉草Carex meyeriana)植物大量出现,植被群落高度显著增加(P<0.05)。植被群落地上生物量由153.67 g/m~2增加至...  相似文献   

15.
在人类活动和气候变化影响下,泥炭沼泽生态系统急剧退化,其独特的氧化还原过程使得退化泥炭沼泽及其恢复过程中土壤有机碳(SOC)分解与存储机制成为研究的热点问题。泥炭沼泽排水/再湿过程会显著改变土壤的氧化还原条件,进而改变土壤微生物群落和酶活性,驱动铁氧化还原过程,影响SOC分解。已有研究对"缺氧是维持泥炭地碳存储的关键"的传统理论提出了质疑,而土壤酶及铁(Fe)在土壤SOC分解与存储过程中分别扮演着"酶锁"和"铁门"的作用,二者同时受到氧化还原条件的影响。然而,有关退化泥炭沼泽及其恢复过程中酶-土壤SOC-Fe相互作用及微生物驱动机制还有待深入。总结了干旱/排水/再湿对泥炭沼泽土壤SOC组分、分子结构、碳排放的影响,并从微生物、酶、Fe化学的角度归纳总结了泥炭沼泽土壤SOC分解的生物化学机制。未来研究中应将土壤水分与土壤SOC分解的生物地球化学机制联系起来,探寻水位变化过程中生物及非生物要素对土壤SOC分子结构变化的调控机制及土壤氧化酶-酚类物质/SOC分子结构-水解酶之间的作用机制。同时,关注Fe的氧化和还原过程,评估Fe-SOC在泥炭沼泽土壤有机碳中的地位,利用分子生物学手段探究水位变化过程中酶-SOC分解/碳排放-铁之间的权衡机制。  相似文献   

16.
Abstract. Inundation of tropical dune slacks is an irregular phenomenon produced by consecutive years with high precipitation and also by intense tropical storms. Our hypothesis was that the distribution, structure and composition of vegetation in tropical dune slacks have changed over time as a result of various factors, principally their topographical position with respect to the water table, frequency and duration of inundation, and historical fluctuations in climate. We tested this hypothesis in two different slacks that represent the slack community at the study site. Inundation caused changes in species composition and distribution, as well as in vegetation structure. In one slack, inundation was considered as disturbance because its intensity increased when areas remained inundated for longer periods of time, causing death of vegetation cover and favouring invasion of more aggressive, secondary species (Pluchea odorata, Ambrosia artemisiifolia, Panicum maximum). When inundation lasted less than three months, rhizomatous herbs remained (Cyperus articulatus, Lippia nodiflora, Hydrocotyle bonariensis) inhibiting the succession process. The results suggest that the different degrees of inundation and the irregular frequency and intensity of inundation in the slacks under study, have favoured different successional tendencies.  相似文献   

17.
Šrutek  Miroslav 《Plant Ecology》1997,130(2):163-169
The study has examined the effect of water table depth (WTD) on production, biomass allocation, allometric relationships and transpiration rate in Urtica dioica. The essential importance of WTD for occurence and spread of Urtica has been documented. Water table depths were: 60, 50, 40, 30, 20, and 10 cm below the soil surface. Thirty individuals of Urtica for each WTD, established from apical parts of young rhizomes, has been planted in containers and placed at WTD from the 8th May to the 24th July. The height of all individuals and the length and width of the largest leaf blade of each individual were measured after 42, 55 and 83 days. Transpiration rate was measured after 53 and 82 days. Above-ground biomass of all individuals was harvested on 24 of July and was separated into individual organs. Various biometric parameters were measured. Results showed that biomass, plant height, branching of stems and rhizomes and rhizomes length decreased in containers with a more shallow WTD. Particularly, allometric relationships between plant height and other characteristics such as basal diameter, length of longest branch and rhizome were affected by the water level. The biometric parameters were highly dependent on plant height. Transpiration strongly decreased with decreasing WTD. Therefore, the high water level in the soil suppresses growth of particular organs and water regime of Urtica plants/. Generally, long-term high water content in the soils of floodplains, particularly during floods, limits rapidly, particularly vegetative spread of Urtica in the wetland habitats.  相似文献   

18.
Wetlands are strategic areas for carbon uptake, but accurate assessments of their sequestration ability are limited by the uncertainty and variability in their carbon balances. Based on 2385 observations of annual net ecosystem production from global wetlands, we show that the mean net carbon sinks of inland wetlands, peatlands and coastal wetlands are 0.57, 0.29 and 1.88 tons of carbon per hectare per year, respectively, with a mean value of 0.57 tons of carbon per hectare per year weighted by the distribution area of different wetland types. Carbon sinks are mainly in Asia and North America. Within and across wetland types, we find that water table depth (WTD) exerts greater control than climate- and ecosystem-related variables, and an increase in WTD results in a stronger carbon sink. Our results highlight an urgent need to sustain wetland hydrology under global change; otherwise, wetlands are at high risk of becoming carbon sources to the atmosphere.  相似文献   

19.
王超  董少刚  贾志斌  夏蔓宏  侯庆秋 《生态学报》2020,40(19):6925-6937
草原采矿活动疏排地下水导致区域地下水位下降,植被退化严重。明确草原采矿活动影响区域地下水位埋深的强度和范围,确定影响植被生长的地下水位埋深阈值,对草原矿区生态环境保护有着重要意义。以呼伦贝尔草原伊敏露天煤矿为例,利用遥感方法,建立采矿前后区域地下水埋深变化与NDVI的定量响应关系;通过样方调查,确定研究区植被群落随地下水位埋深变化的演替模式,分析草原矿区地下水位变化对草原植被类型、物种丰富度、植被覆盖度、地上生物量和综合优势比的影响;结合两种方法,确定维持研究区植被正常生长的地下水位埋深阈值。其结果如下:从柴达敏诺尔湖至采坑边缘,地下水位埋深从0 m逐渐下降至60 m,植被群落演替为盐化草地→典型草原→退化典型草原→退化草甸草原→盐化草甸草原;研究区最适宜植被生长的地下水位埋深约为1 m;1-30 m为维持研究区植被正常生长的阈值地下水位埋深。最后根据以上结论,将研究区划分为地下水开发的一级敏感区、二级敏感区和三级敏感区,针对不同敏感区提出了不同的地下水开发政策,以防止采矿活动疏排地下水引起草原退化。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号