首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the seedbanks, seed rains, plant densities and biomasses of weeds under two contrasting systems of management in beet, maize and spring oilseed rape. Weed seedbank and plant density were measured at the same locations in two subsequent seasons. About 60 fields were sown with each crop. Each field was split, one half being sown with a conventional variety managed according to the farmer's normal practice, the other half being sown with a genetically modified herbicide-tolerant (GMHT) variety, with weeds controlled by a broad-spectrum herbicide. In beet and rape, plant densities shortly after sowing were higher in the GMHT treatment. Following weed control in conventional beet, plant densities were approximately one-fifth of those in GMHT beet. In both beet and rape, this effect was reversed after the first application of broad-spectrum herbicide, so that late-season plant densities were lower in the GMHT treatments. Biomass and seed rain in GMHT crops were between one-third and one-sixth of those in conventional treatments. The effects of differing weed-seed returns in these two crops persisted in the seedbank: densities following the GMHT treatment were about 20% lower than those following the conventional treatment. The effect of growing maize was quite different. Weed density was higher throughout the season in the GMHT treatment. Late-season biomass was 82% higher and seed rain was 87% higher than in the conventional treatment. The difference was not subsequently detectable in the seedbank because the total seed return was low after both treatments. In all three crops, weed diversity was little affected by the treatment, except for transient effects immediately following herbicide application.  相似文献   

2.
Effects of genetically modified herbicide-tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10-fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock-on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.  相似文献   

3.
4.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

5.
Over the past 40 years there have been marked shifts in arable farmland management that are widely believed to have had a considerable impact on flowering plants and invertebrates and the small mammals and birds that rely upon them. It is not yet possible to predict the dynamics of plants and invertebrates either with past or future changes in farmland management. This study investigates whether a basic invertebrate classification, formed of broad trophic groups, can be used to describe interactions between invertebrates and their resource plants and evaluate management impacts for genetically modified, herbicide-tolerant (GMHT) and conventional herbicide management in both spring- and winter-sown oilseed rape. It is argued that the analyses validate trophic-based approaches for describing the dynamics of invertebrates in farmland and that linear models might be used to describe the changes in invertebrate trophic group abundance in farmland when driven by primary producer abundance or biomass and interactions between invertebrates themselves. The analyses indicate that invertebrate dynamics under GMHT management are not unique, but similar to conventional management occurring over different resource ranges, and that dynamics differed considerably between spring- and winter-sown oilseed rape. Thus, herbicide management was of much lower impact on trophic relationships than sowing date. Results indicate that invertebrate dynamics in oilseed rape are regulated by a combination of top-down and bottom-up trophic processes.  相似文献   

6.
Farmland biodiversity and food webs were compared in conventional and genetically modified herbicide-tolerant (GMHT) crops of beet (Beta vulgaris L.), maize (Zea mays L.) and both spring and winter oilseed rape (Brassica napus L.). GMHT and conventional varieties were sown in a split-field experimental design, at 60-70 sites for each crop, spread over three starting years beginning in 2000. This paper provides a background to the study and the rationale for its design and interpretation. It shows how data on environment, field management and the biota are used to assess the current state of the ecosystem, to define the typical arable field and to devise criteria for selecting, sampling and auditing experimental sites in the Farm Scale Evaluations. The main functional and taxonomic groups in the habitat are ranked according to their likely sensitivity to GMHT cropping, and the most responsive target organisms are defined. The value of the seedbank as a baseline and as an indicator of historical trends is proposed. Evidence from experiments during the twentieth century is analysed to show that large changes in field management have affected sensitive groups in the biota by ca. 50% during a year or short run of years--a figure against which to assess any positive or negative effects of GMHT cropping. The analysis leads to a summary of factors that were, and were not, examined in the first 3 years of the study and points to where modelling can be used to extrapolate the effects to the landscape and the agricultural region.  相似文献   

7.
The maintenance of invertebrate diversity within agricultural environments can enhance a number of agronomically important processes, such as nutrient cycling and biological pest control. However, few Australian studies have been undertaken which specifically address the effects of commercial management regimes on rice field biodiversity. In this study, we compared aquatic macroinvertebrate communities within Australian rice fields cultivated under three commercial management regimes: conventional-aerial (agrochemicals applied, aerially sown), conventional-drill (agrochemicals applied, directly drill-sown) and organic-drill (agrochemical-free, directly drill-sown). These comparisons were undertaken using a combination of community assessment approaches, including morphospecies richness, abundance, diversity and community composition. In general, greater biodiversity existed within macroinvertebrate communities that developed under organic management regimes than under conventional regimes (i.e., higher morphospecies richness and Shannon diversity). Although there were significant differences in several parameters across management regimes early in the rice-growing season, as the growing season progressed the invertebrate communities that developed in the different management regimes became more similar. Only community composition analyses showed significant differences late in the growing season, with functional differences across aquatic faunal assemblages suggested by increased predator abundance in communities sampled from the organic management regime. In order to improve biodiversity within these aquatic environments, management techniques need to be examined individually and the most disruptive processes identified. Alternative management procedures can then be developed that minimise biodiversity loss whilst still delivering required agronomic outcomes.  相似文献   

8.
This study focuses on the long-term changes of collembolan communities occurring after the conversion of arable land to managed grassland. We analysed collembolan communities at grassland sites of different age that had been gradually converted over a period of 50 yr. Abundance and biomass responded rapidly and very positively to the conversion of arable land to grassland, while species richness was not affected. Collembolan assemblages changed only little during grassland maturation. The impact of land-use change on community structure was more obvious at the functional level because the colonization processes observed in our study mostly relied on hemiedaphic species. Vegetation and soil parameters were good predictors of collembolan community structure during development of managed grassland. The present study demonstrated that past landscape patterns and processes like land-use conversion and subsequent succession had a considerable impact on the present day pattern of species richness and community composition of Collembola within a landscape. Our results strongly differ from those obtained for other invertebrate groups, highlighting on the one hand the very diverse reactions of invertebrates to a common factor, and on the other hand the need to survey more than one taxa in order to draw conclusions on effects of land-use change on faunistic communities.  相似文献   

9.
A large proportion of the land surface area of Great Britain (GB) is used for arable agriculture. Due to changes in farm management practices over the last 50 years, there have been marked declines in the abundance of arable wildlife groups of conservation importance, including weeds, invertebrates and birds. Here we ask whether changes in weed species composition, driven by changes in management, such as a change in crop or a modification in herbicide regime, might be expected to lead to changes in the species compositions of other wildlife groups, including invertebrates. Using multivariate analyses, on data from eight crop and herbicide management groups sampled across 266 arable fields, we show that the weed composition changes with the crop and herbicide management adopted and the invertebrate composition changes with the crop grown. We conclude that each conventional crop sampled had a unique composition of weeds and invertebrates, and expect this to be true for all conventional arable crops. Changes in weed species composition, driven by changes in crop or herbicide management, will lead to changes in the compositions of invertebrates, and possibly other wildlife groups. However, these changes will probably be buffered by the effect of functional redundancy, the crop and dispersal. Handling editor: Gimme Walter.  相似文献   

10.
Priority effects occur when species that arrive first in a habitat significantly affect the establishment, growth, or reproduction of species arriving later and thus affect functioning of communities. However, we know little about how the timing of arrival of functionally different species may alter structure and function during assembly. Even less is known about how plant density might interact with initial assembly. In a greenhouse experiment legumes, grasses or forbs were sown a number of weeks before the other two plant functional types were sown (PFT) in combination with a sowing density treatment. Legumes, grasses or non-legume forbs were sown first at three different density levels followed by sowing of the remaining PFTs after three or six-weeks. We found that the order of arrival of different plant functional types had a much stronger influence on aboveground productivity than sowing density or interval between the sowing events. The sowing of legumes before the other PFTs produced the highest aboveground biomass. The larger sowing interval led to higher asymmetric competition, with highest dominance of the PFT sown first. It seems that legumes were better able to get a head-start and be productive before the later groups arrived, but that their traits allowed for better subsequent establishment of non-legume PFTs. Our study indicates that the manipulation of the order of arrival can create priority effects which favour functional groups of plants differently and thus induce different assembly routes and affect community composition and functioning.  相似文献   

11.
This multidisciplinary study investigates agro-ecological functions (nature conservation, agriculture, environment) and implications of newly created, mown sown and unsown field margin strips installed on ex-arable land to increase biodiversity. From conservational concern, the development of species rich field margin strips was not strongly affected by the installed type of margin strip since species diversity converged over time, whether strips were sown or not. Convergence between unsown and sown margin strips occurred also in terms of species composition: unsown and sown strips became similar over time. Mowing without removal of cuttings significantly reduced species richness, yielded more grassy margin strips and delayed similarity in species composition between sown and unsown margin strips. Species richness on the longer term was not significantly affected by light regime nor by disturbance despite significant temporary effects shortly after the disturbance event. On the contrary vegetation composition in terms of importance of functional groups changed after disturbance: the share of spontaneous species within functional groups increased resulting in higher similarity between the sown and unsown vegetation. Furthermore risk of invasion was highest in the disturbed unsown community on the unshaded side of a tree lane. A positive effect of botanical diversity on insect number and diversity was found. However the effects of botanical diversity on insect number was mediated by light regime. At high light availability differences between plant communities were more pronounced compared to low light availablilty. The abundance of some insect families was dependent on the vegetation composition. Furthermore light availability significantly influenced insect diversity as well as the spatial distribution of families. From agricultural concern, installing margin strips by sowing a species mixture and a mowing regime with removal of cuttings are good practices to diminish the risk of species ingrowth into adjacent crops by creeping roots and rhizomes. Seed dispersal was only problematic one year after the installation of the field margin strips particularly nearby the unsown margin strip and wind-borne seeds were dispersed over limited distances, mainly within 4 m of field margins. Annual herbage yield was not affected by mowing management. DM yield of sown/unsown communities converged over time. Compared to herbage from an intensively managed fertilized grassland, field margin herbage revealed a low feeding value, owing to a low crude protein content, a low digestibility and a high crude fibre content. The unsown community had a higher forage quality than communities sown to bred commercially available grass varieties. Both digestibility and crude protein content decreased over time irrespective of plant community or location. Mid June cuts were more productive than mid September cuts but digestibility and crude protein content was lower. The use of herbage from field margins as hay for horses or as a component in farmland compost are good alternatives. A strong relation was found between the distribution of pest insects and their antagonist families along field margin strips indicating a status of biological equilibrium. From environmental concern, field margin strips buffered boundary vegetation and watercourses against cropped areas loaded with high levels of mineral nitrogen. Margin strips reduced the mineral nitrogen content of the soil in the margin and mineral nitrogen loss during wintermonths. Mineral nitrogen loss was not affected by field margin type but by distance from the field crop. A minimal width of 5 m is necessary to reach an optimal reduction in mineral soil N and N losses.  相似文献   

12.
13.
Abstract.  1. Although the importance of plant community assemblages in structuring invertebrate assemblages is well known, the role that architectural complexity plays is less well understood. In particular, direct empirical data for a range of invertebrate taxa showing how functional groups respond to plant architecture is largely absent from the literature.
2. The significance of sward architectural complexity in determining the species richness of predatory and phytophagous functional groups of spiders, beetles, and true bugs, sampled from 135 field margin plots over 2 years was tested. The present study compares the relative importance of sward architectural complexity to that of plant community assemblage.
3. Sward architectural complexity was found to be a determinant of species richness for all phytophagous and predatory functional groups. When individual species responses were investigated, 62.5% of the spider and beetle species, and 50.0% of the true bugs responded to sward architectural complexity.
4. Interactions between sward architectural complexity and plant community assemblage indicate that the number of invertebrate species supported by the plant community alone could be increased by modification of sward architecture. Management practices could therefore play a key role in diversifying the architectural structure of existing floral assemblages for the benefit of invertebrate assemblages.
5. The contrasting effects of sward architecture on invertebrate functional groups characterised by either direct (phytophagous species) or indirect (predatory species) dependence on plant communities is discussed. It is suggested that for phytophagous taxa, plant community assemblage alone is likely to be insufficient to ensure successful species colonisation or persistence without appropriate development of sward architecture.  相似文献   

14.
The effects of management of genetically modified herbicide-tolerant (GMHT) crops on adjacent field margins were assessed for 59 maize, 66 beet and 67 spring oilseed rape sites. Fields were split into halves, one being sown with a GMHT crop and the other with the equivalent conventional non-GMHT crop. Margin vegetation was recorded in three components of the field margins. Most differences were in the tilled area, with fewer smaller effects mirroring them in the verge and boundary. In spring oilseed rape fields, the cover, flowering and seeding of plants were 25%, 44% and 39% lower, respectively, in the GMHT uncropped tilled margins. Similarly, for beet, flowering and seeding were 34% and 39% lower, respectively, in the GMHT margins. For maize, the effect was reversed, with plant cover and flowering 28% and 67% greater, respectively, in the GMHT half. Effects on butterflies mirrored these vegetation effects, with 24% fewer butterflies in margins of GMHT spring oilseed rape. The likely cause is the lower nectar supply in GMHT tilled margins and crop edges. Few large treatment differences were found for bees, gastropods or other invertebrates. Scorching of vegetation by herbicide-spray drift was on average 1.6% on verges beside conventional crops and 3.7% beside GMHT crops, the difference being significant for all three crops.  相似文献   

15.
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.  相似文献   

16.
17.
Questions: How is succession on ex‐arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex‐arable land, with five blocks, each containing three 10 m × 10 m experimental plots: natural colonization, a low‐ (four species) and high‐diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its‘insurance effect’: the high diversity mixtures were always able to compensate for the failure of some species.  相似文献   

18.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

19.
Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.  相似文献   

20.
Low‐input grassland biomass from marginal and other slightly more fertile sites can be used for energy production without competing with food or fodder production. The effect of grassland diversity on methane yield has received some attention, but we do not know how community assembly may affect methane yield from grassland biomass. However, methane yields determine the potential economic value of a bioenergy substrate. Hence, a better understanding of how plant community assembly affects methane yield would be important. We measured biomass production and methane yield in the second year of a grassland field experiment which manipulated the order of arrival of different plant functional groups (forbs, grasses or legumes sown first and all sown simultaneously) and sown diversity (9 vs. 21 species). The order of arrival of the plant functional groups significantly determined the relative dominance of each group which in turn mainly explained the variance in aboveground biomass production. Differences in area‐specific methane yields were driven by differences in biomass production and which plant functional groups dominated a plot. When grasses were sown first, legumes and grasses codominated a plot and the highest area‐specific methane yield was obtained. Overall, the results indicate that altering the order of arrival affected the community functional and species composition (and hence methane yields) much more than sown diversity. Our study shows that a combined use of positive biodiversity effects and guided plant community assembly may be able to optimize methane yields under field conditions. This may allow a guided, sustainable, and lucrative use of grassland biomass for biogas production in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号