首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ever-worsening condition of streams due to local, regional, and global demands on water has resulted in the development of increasingly streamlined, rapid assessment methods using macroinvertebrates. Biotic indices in particular are versatile and robust, although not always easy to use. For example, the family-level South African Scoring System is an effective water quality measure, but is time-consuming and requires high-level expert training. The index could be used alongside the species-level Dragonfly Biotic Index (DBI), originally developed for monitoring habitat integrity, with which it is significantly and strongly correlated. We review here the relevant biotic indices in stream biomonitoring and their advantages and disadvantages, and present a new extension of the DBI, the Habitat Condition Scale (HCS). The HCS enables comparison and ranking of sites in terms of their habitat condition. Indeed, the DBI is a very flexible index, having been used in site selection and prioritization for conservation, as well as the measurement of habitat recovery. The theoretical framework behind the index demonstrates the potential of the index to track biotic changes due to climate change. The index could also be easily adapted for use in other biogeographical regions, given that species distributions, threat levels and sensitivities are well-known, and that there is an adequate number of endemic species. However, like all benthic macroinvertebrate indices, the DBI cannot always identify exactly which in-water impacts have an effect and to what extent. The real power of the DBI lies in being able to quantify community response to known physical changes on the riverscape and across the region.  相似文献   

2.
Monitoring changes in population levels of a wide range of species in biodiversity research and conservation requires practical, easy-to-use and efficient assessment and monitoring methods. Dragonflies (Insecta: Odonata) are a valuable tool for assessing aquatic systems and have been used as indicators of ecological health, ecological integrity, and environmental change, including climatic change, as well as indicators of habitat recovery. We field-tested a freshwater ecological integrity index, the Dragonfly Biotic Index (DBI), based on dragonfly assemblages at the local scale, and compared the DBI to a biodiversity index (average taxonomic distinctness, AvTD) as well as to a standard freshwater benthic macroinvertebrate-based freshwater health index (South African Scoring System, using Average Score Per Taxon, ASPT). We sampled 20 river sites, selected a priori. Adult dragonflies and benthic macroinvertebrates were collected using standardized methods. Environmental variables were collected in situ, and water samples taken. Temperature and pH were the most important physical environmental variables in explaining the assemblage structure, and we found significant abiotic–biotic relationships, as well as biotic–biotic relationships. Overall, dragonflies were more sensitive to changes in river condition than were macroinvertebrates, in part because they were responding at the species rather than higher taxonomic level. AvTD scores did not show any significant relationship with changes in river condition. Furthermore, sites with low biotic scores (indicating disturbance) had high AvTD values. In contrast, DBI site value and ASPT scores were highly significantly correlated. We conclude that dragonfly assemblages in the form of a DBI are an excellent tool for environmental assessment and monitoring freshwater biodiversity, with the potential to replace labour-intensive benthic macroinvertebrate-based freshwater quality assessments, such as SASS.  相似文献   

3.
Biological assessment of aquatic resources requires the availability of bioassessment tools that work in all waterbody types and regions of interest. Developing new assessment tools may require several years of data collection and substantial investment of resources, which may not be an option for some aquatic resource managers. Adapting tools developed for different regions or wetland types may be an attractive alternative to developing new indices, provided they work well in the novel setting. In this study, we explore the transferability of two bioassessment indices for application to depressional wetlands in California, which are wetland type of management concern but for which bioassessment tools don’t currently exist. We tested the applicability of a depressional wetland invertebrate index of biotic integrity (IBI) developed in the San Francisco Bay region of northern California for application in the drier regions of southern California (i.e. geographic transferability), and the ability to apply a riverine benthic diatom IBI to benthic diatoms in depressional wetlands (i.e. water body type transferability). We evaluated the accuracy and responsiveness of the existing Indices for use in depressional wetlands and refined reference definitions and recalibrated thresholds relative to stressor gradients to maximize index performance. Performance of the adapted indices was compared to that of an existing habitat assessment tool (the California Rapid Assessment Method; CRAM) that has been developed for statewide application of depressional wetlands. Finally, we demonstrate application of the revised indices for ambient assessment of depressional wetland condition in southern California. Recalibrating both the macroinvertebrate and diatom indices to reference thresholds based on nutrient concentrations resulted in lower coefficient of variation among reference sites, greater differentiation between reference and non-reference and stronger relationship with stressors than when reference thresholds were based on landscape disturbance. Overall, the simple adjustment of the reference definition allowed us to transfer the indices with no structural changes to the metrics. This approach can facilitate future index adaptations that allow practitioners to include waterbody types for which there is no current index into routine biomonitoring programs.  相似文献   

4.
《Ecological Indicators》2008,8(5):599-613
The invertebrate species index (ISI) is a new biotic index to assess stream health in southeast Queensland, Australia, using benthic macroinvertebrates. The index aims to refine stream monitoring, in particular for eutrophication, as nutrient input is a major stressor of streams in the region. Biotic indices previously used for the region were based on sensitivity scores for macroinvertebrate families and orders, and were valid for all streams across the continent. The ISI is based on species level and tailored to the specific traits of southeast Queensland, thus yielding an increased level of detection of biological change. This will improve monitoring of environmental impact on a regional and local scale. The ISI is a site-specific index calculated as the weighted average (WA) of species’ sensitivity scores (S10), with a species-specific indicator weight (W) and the abundance (A) of each species used as weights. S10 scores for 203 species of benthic macroinvertebrates ranging from 10 (species most sensitive to pollution) to 1 (tolerant of excessive pollution) were derived by means of WA regression and calibration using site scores representing an environmental impact gradient. W measures the indicator strength of the species, and was derived from the weighted standard deviation of the S10. The initial site scores for the WA modeling were derived using canonical correspondence analysis (CCA) to ordinate the sites along a gradient associated with 12 abiotic variables. The data on benthic macroinvertebrates are based on 212 quantitative samples collected in wadeable freshwater streams in southeast Queensland. Two major stream types, (1) small creeks, mainly of uplands and (2) larger streams and rivers of lowlands, were recognised for the region, and for both types the ISI range representing reference condition was established. These reference conditions can be used to establish ecological quality ratios by comparing observed to expected indices and to define ecological quality classes. The ISI is the first biotic index for streams in Australia that uses sensitivity scores and indicator weights for macroinvertebrate species. There is a growing trend in Australia to identify stream macroinvertebrates to species level and to study their specific traits and ecological requirements. The reasons for this are manifold; assessing and monitoring stream health is only one of them. For most regions of Australia, no common ground exists, so far, on how to use species data for stream health assessment. The new biotic index fills this gap for southeast Queensland in providing a standard for the use of species level data in stream health assessment.  相似文献   

5.
6.
Many globally applied biotic indices, including the AMBI benthic index, are based on species’ sensitivity/tolerance to anthropogenic disturbances. The AMBI scoring primarily relies on the correct assignment of both taxon stressor-sensitivities and the disturbance thresholds or bands. Using an extensive, long-term monitoring dataset from New Zealand (NZ) estuaries, we describe how the AMBI has been strengthened through quantitative derivation of taxon-specific sensitivities and condition thresholds for two key estuarine stressors [mud and total organic carbon (TOC)], and the integration of taxon richness. The results support the use of the existing AMBI condition bands but improve the ability to identify cause; 2–30% mud reflected a ‘normal’ to ‘impoverished’ macrofaunal community; 30–95% mud and 1.2–3% TOC ‘unbalanced’ to ‘transitional’; and >3–4% TOC ‘transitional’ to ‘polluted’. The (refined) AMBI was also successfully validated (R2 values >0.5 for mud, and >0.4 for TOC) for use in shallow, intertidal dominated estuaries NZ-wide. Most biotic indices lack the ability to differentiate between anthropogenic disturbances, which in turn undermine their effectiveness for applied purposes. By integrating key quantitative information to an existing benthic index, these results enable more robust identification of coastal stressors and facilitate defensible management decisions.  相似文献   

7.
Saronikos Gulf, including the industrial zone of Elefsis Bay and the Port of Piraeus, is one of the most anthropogenically impacted coastal regions of Greece. Distinct assemblages of benthic foraminifers in sediment samples, collected from this gulf in February 2012, defined three zones that reflect abiotic parameters of the sediments (e.g., organic carbon, metal content). A low-diversity assemblage, dominated by stress-tolerant Ammonia tepida and Bulimina spp., was characteristic of samples from Elefsis Bay. Samples from the western and central part of Saronikos Gulf were the most variable with respect to both abiotic parameters and the foraminiferal assemblage, characterized by a mix of stress-tolerant and more sensitive taxa, especially Bolivina spp. and Nonion fabum. Samples from the coast of Salamis and at the eastern sector of the gulf were characterized by a diverse assemblage that included Peneroplis pertusus, miliolids, and a variety of small, epiphytic rotaliid taxa. A new biotic index, the Foram Stress Index (FSI), is based on the relative percentages of two ecological groups of benthic foraminiferal species, grouped according to their tolerance/sensitivity to organic matter enrichment and weighted proportionately to obtain a formula to define five ecological-status classes. The FSI produced three rankings for these samples (Poor, Moderate and Good), that strongly correlate with the macroinvertebrate-classification tool known as the BENTIX Index. The FSI provides a new tool to assess sediment or substrata quality based upon the benthic foraminiferal assemblages, which are a significant component of living meiobenthic communities that are generally not considered in most biotic benthic indices.  相似文献   

8.
Marine biotic indices (AMBI, BENTIX) and the statistical tool M-AMBI (Multivariate AMBI) were applied as a comparative approach in assessing the Ecological Quality Status (EcoQS) of two Mediterranean coastal lakes (Caprolace and Fogliano lakes) situated in the Circeo National Park (Central Italy). The macrobenthic community was analysed using univariate indices (community structure), correspondence analysis (CA) and taxonomic distinctness indices (Δ+ and Λ+). The community composition showed a dominance of lagoonal species in both coastal lakes, while in Caprolace lake marine taxa were also found. Diversity index (H′) complies to ranges found in Mediterranean lagoons and taxonomic distinctness indices demonstrated that taxonomy structure is in accordance with natural variability ranges. Principal component analysis (PCA) on chemical parameters of water and sediment showed that both coastal lakes differ mainly in their organic matter composition. In fact, the protein fraction of bio-polymeric carbon prevails in Fogliano lake, while the ‘refractory’ component represented by carbohydrate fraction is predominant in Caprolace lake. The difference between the two coastal lakes was also demonstrated by co-inertia analysis (COIA) performed using abundance of species and concentrations of chemical parameters. The results from the application of the three biotic indices do not highlight a clear distinction between the two lagoons. However, the AMBI index provided a more suitable evaluation of EcoQS corresponding to ‘slightly polluted’ lagoons while M-AMBI and moreover BENTIX indices indicated a worsening situation. The biotic indices are widely used in assessing the EcoQS in marine environments, but their proper application in transitional waters would depend on a resettlement; thresholds established in the biotic index scale values need to be modified according to natural variability of transitional waters referring to abiotic conditions and abundance of tolerant species.  相似文献   

9.
将3个底栖生物指数AZTI海洋生物指数(AMBI)、多毛类机会种和端足目动物指数(BOPA)、底栖动物多毛类和端足目指数(BPA)和Shannon多样性指数(H)应用于福建省近岸海域4个典型海湾和1个河口的生态质量评价,评估这4个指数在研究区的适用性.结果表明: 4个指数的评价结果差异较大,评价等级完全相同的站位仅有4个,占总评价站数的8.7%;AMBI将76.1%的站位评价为等级“良”,BOPA将89.1%的站位评价为等级“优”,BPA和H的评价结果等级梯度变化明显;对于海湾,BOPA、BPA和AMBI与营养盐因子活性磷酸盐(DIP)和无机氮(DIN)无显著相关性,不能响应研究区的富营养化压力;而H与DIN呈显著负相关.对于河口,BOPA、BPA和AMBI与DIP和DIN均呈显著正相关,且随着与入海口距离的减小,7个断面生态质量评价等级没有明显变化,不能识别河口高强度的富营养化压力,评价结果偏高;而H与DIN呈显著负相关,且随着与入海口距离的减小,7个断面生态质量评价等级呈现提高的趋势.总体上,BOPA、BPA和AMBI在福建近岸海域的适用性较低,而H更合适该研究区,能够响应研究区主要的环境压力.  相似文献   

10.
Biotic indices based on benthic macroinvertebrates are increasingly being used to assess the ecological quality of running water worldwide. In Nepal in the central Himalaya, five biotic indices have been developed in succession over the last decade to assess the ecological status of rivers, namely: the NEPbios, BRSbios, GRSbios, HKHbios, and NEPbios-Extended. The implementation of control and protection policies should be based on indices with proven reliability. Such reliability refers to the ability of the index to detect the correct status about the health of the assessed environment. So in the present study, we compare the performance of these five indices to determine the most robust, reliable biotic index for Nepal. In total, 248 biological samples belonging to first- to sixth-order streams were analyzed. Each sampling site was preclassified in situ using a screening protocol and later validated with physicochemical parameters to reflect the actual field condition. Overall, the GRSbios proved to be the most reliable, followed by the NEPbios-Extended, HKHbios, NEPbios, and BRSbios. The results were further validated by the ROC (Receiver Operating Characteristic) curve method. The study recommends applying the GRSbios to ecologically assess rivers in Nepal. In addition, we discuss modifying the GRSbios method to consider the future impacts of global change.  相似文献   

11.
12.
陈凯  肖能文  王备新  李俊生 《生态学报》2012,32(6):1970-1978
为了解石油开采对湿地生态系统的影响,2009年10月调查了黄河三角洲东营湿地34个样点的水体物理化学属性和大型底栖无脊椎动物群落结构。共获得3门6纲12目41科70属84个大型底栖无脊椎动物分类单元。Shannon-Wiener多样性指数(r=-0.446,P=0.02)和TN显著负相关,BI指数与理化指标无显著相关性;软体动物分类单元数与盐度(r=-0.422,P=0.028)显著负相关,与pH值(r=0.435,P=0.023)显著正相关;软体动物个体百分数同样与盐度(r=-0.395,P=0.041)呈显著负相关,与pH值(r=0.565,P=0.002)呈极显著正相关;寡毛类分类单元数与TN(r=0.524,P=0.005)极显著正相关。水体石油含量与生物指数无显著相关性。典范对应分析(CCA)显示,TN、pH、盐度是影响东营湿地底栖动物群落结构的主要环境变量,水体石油污染并不是主要的胁迫因子。寡毛类和软体动物是该地区对环境变化的主要指示生物类群。Shannon-Wiener多样性指数水质生物评价结果显示,溢洪河支流、广利河上游、挑河上游、东张水库属于清洁;轻污点位有9个,其余点位为中污或重污。  相似文献   

13.
The Water Framework Directive requires all Member States to achieve good ecological quality status for all waters (e.g., transitional waters). For that purpose, Member States must assess water bodies based on information on the Biological Quality Elements listed for each of them (e.g., benthic macroinvertebrates). However, the production of such a quality status classification (high, good, moderate, poor, bad) requires high reference conditions (associated with the absence of, or very low, human pressure) against which the deviation of the samples to be assessed can be measured. In transitional waters, upper stretches have seldom been included in monitoring activities, resulting in very little knowledge of mesohaline and oligohaline areas, which means further difficulty when defining the required reference conditions for these zones.Regarding the benthic macroinvertebrates, large datasets from the mesohaline and oligohaline stretches of the Mondego estuary (four seasons, five years, environmental parameters, density and biomass data) were used to estimate high reference condition values. In terms of environmental conditions, summer was identified as the most stable season and the most suitable for defining reference conditions for selected ecological indicators. For each indicator, the multivariate linear model expressing the best correlation with measured environmental parameters was selected. These models were used afterwards, by replacing the environmental parameters in those equations with their high reference values, to calculate the reference condition for each ecological indicator.Generally, macrobenthic communities within each stretch changed over the years, being mainly influenced by salinity and sediment organic matter. In both stretches, only a few taxa occurred and two species (the amphipod Corophium multisetosum and the bivalve Corbicula fluminea) were clearly dominant. Diversity values (for Margalef, Shannon and ES50 – Hurlbert indices) were low in both stretches, although higher in the mesohaline, and for the most part the ecological condition was low (AMBI – AZTI Marine Biotic Index, MEDDOC – Mediterranean Occidental index, BENTIX biotic index, BO2A – Benthic Opportunistic Annelida Amphipod index). On the whole, the RC estimated for each index followed the same trend, being different for each stretch and below those found for lower sections of the estuary in other surveys.  相似文献   

14.
Scuba diving is now one of the major form of commercial use of marine protected areas (MPAs) around the world and the control of its potential impacts on the marine environment represents a fundamental key to manage this recreational activity in highly dived areas. A potential tool to tackle such issues has been thought to be the definition of a value of recreational carrying capacity of an area, but this approach has been rarely considered management-effective. Therefore, the first step for effectively managing scuba-diving should be ‘bottom-up’: characterizing the benthic communities potentially affected by diving and evaluating their vulnerability. Aim of this paper is to propose a tool to define an index of vulnerability for dive trails (STVI: scuba trail vulnerability index). This has taken into consideration both physical and biological features of each trail. All the considered features are represented by non-quantitative variables, because either they are purely qualitative or their quantitative measurement is impractical. The management of such qualitative information and its translation into a formal methodology was performed by means of fuzzy logic, which has been repeatedly proposed as a powerful technique to develop indices of environmental quality. The approach adopted in this study provided a useful tool for the preliminary assessment of the potential vulnerability of benthic assemblages to scuba-diving and may represent an alternative method to the assessment of carrying capacity. The application of this index will enable management strategies for potentially reducing the degradation of benthic organisms/assemblages, and allowing a sustainable use of MPAs.  相似文献   

15.
The usefulness of benthic multi-metric indices when assessing seafloor integrity across broad environmental gradients should be deliberated, as their lack of transparency might hide important sources of variation and fail to identify environmental change. This study compares the performance of two multi-metric indices; the Benthic Quality Index (BQI) and the Brackish water Benthic Index (BBI) between three sub-basins in the Baltic Sea. Both indices reflect the salinity-driven gradient in macroinvertebrate diversity and composition as well as changes in bottom water oxygen concentrations. The relative contribution of predictor variables for explaining index variation does, however, differ between sub-basins, resulting in the indices representing different aspects of the benthic community along the environmental gradient. This context-dependency is caused by inherent differences in benthic community characteristics between the sub-basins of the Baltic Sea, and how the communities are portrayed by the indices. An increased transparency of the importance of the different predictors for directing index values is needed for coherent classifications over broad environmental gradients, such as those occurring in large estuarine water bodies. Use of a weight of evidence table to combine multiple indicators would preserve transparency and be more likely to provide a robust assessment method that would detect seafloor degradation at an early stage.  相似文献   

16.
A gap in the European Water Framework Directive (WFD) is addressed, aiming for the development of an ecological quality status assessment tool based solely on the Biological Quality Element benthic macroinvertebrates from intertidal rocky shores. The proposed Rocky shore Macroinvertebrates Assessment Tool (RMAT) was tested and validated along disturbance gradients (organic enrichment). During the whole process, the response of widely used metrics (e.g. Hurlbert index, Shannon-Wiener index, AZTI’s Marine Biotic Index; Bentix biotic index) and models (i.e., metrics combined) was compared to results provided by the Marine Macroalgae Assessment Tool to the same sampling sites.The RMAT is a multimetric index compliant with the WFD based on the benthic macroinvertebrates community, combining ‘abundance’ (Hurlbert index) and ‘taxonomic composition’ (Bentix index using density and biomass data) metrics. It performed well along anthropogenic disturbance gradients, showing ecological quality increasing from close to far away from the disturbance.The RMAT is a promising tool for rocky shore ecological assessment in the scope of the WFD or other monitoring activities worldwide.  相似文献   

17.
This paper focuses on the difference between the value of some commonly used diversity indices (Simpson, Shannon, abundance, richness) calculated from benthic grab samples and their value in the population or region from which the samples are taken. The ability of the sample indices, as well as a recently derived relative Shannon index, to reflect change in biodiversity is examined in a short simulation study based on changing one of the diversity parameters (abundance, richness and evenness) in the population, whilst keeping the other two components constant. Our results suggest that, whilst their population equivalents do not always reflect biodiversity changes, the sample Simpson, Shannon and Richness indices perform well. We note that this will be true for any surveys where the sampling programme fails to detect many species in a population, and hence will be applicable for most benthic surveys. The use of sample indices to detect changes in biodiversity from long-running time series in the Thames and Tyne estuaries is illustrated.  相似文献   

18.
This study aimed at comparing the results obtained by processing a series of data according to several diversity indices (Simpson, Berger-Parker, Margalef, Menhinick, McIntosh, Shannon) and one similarity index (Jaccard) with those obtained from two biotic indices (Trent River Biotic Index, Extended Biotic Index). In addition, Cody's index was adopted to measure the species turnover along the stream gradient. The source of the data was a study of the seasonal variations of macroinvertebrates from the Ravella stream (Como Province, Northern Italy). The conclusions are the following. There is clearly a certain connection between the organic debris in the habitat, the abundance of individuals and the decrease in the diversity value of the macroinvertebrate association. The species turnover along the stream gradient is rapid which is due, in addition to birth and death rates, to the fact that most of the insects emerge as terrestrial adults. The species abundance distribution is a very simple and powerful tool for describing and comparing the species diversity from different sampling stations. Any type of monitoring (e.g., biotic indices, diversity indices) is useful in comparing non-polluted and heavily polluted environments. Conversely, small differences between species associations are better highlighted if diversity indices with high discriminant ability (e.g., Simpson's index) or species abundance distribution are used rather than biotic indices.  相似文献   

19.
1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.  相似文献   

20.
《Ecological Indicators》2007,7(1):164-180
The biotic index Bentix [Simboura, N., Zenetos, A., 2002. Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new biotic index. Mediterr. Mar. Sci., 3 (2), 77–111] developed for the classification of ecological status of zoobenthic communities was tested in a Mediterranean coastal area (Aegean Sea, N. Evvoikos gulf, Greece) subject to coarse metalliferous waste discharge. The residues in the form of slag are the byproducts of the smelting procedure of a local ferronickel plant and are discharged in a permitted area 8 km from the shore. This practice adopted over the last 36 years has led to the formation of a thick underwater deposit of slag on the sea bottom. A decade of monitoring resulted to a long series of data on macrozoobenthos communities in the area. Application of the Bentix and other indices on the data has revealed the long-term impact of dumping on the benthic communities and the potential of the indices used to assess the community health. Among the indices tested, Bentix index succeeded in assessing the long-term trends of decline or recovery of the community health. The index proved efficient in detecting differences of the ecological status of the communities attributed to the transferring of the core of the dumping activity over the area studied, as validated by the geophysical data provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号