首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions.  相似文献   

2.
Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel ecosystems in future climates. Focusing on riparian ecosystems, we use qualitative process models to predict likely abiotic and biotic changes in four case study systems: tropical coastal floodplains, temperate streams, high mountain streams and urban riparian zones. We concentrate on functional groups rather than individual species and consider dispersal constraints and the capacity for genetic adaptation. Our scenarios suggest that climatic changes will reduce indigenous diversity, facilitate non-indigenous invasion (especially C4 graminoids), increase fragmentation and result in simplified and less distinctive riparian ecosystems. Compared to models based on biota-environment correlations, process models built on mechanistic understanding (like Bayesian belief networks) are more likely to remain valid under novel climatic conditions. We posit that predictions based on species’ functional traits will facilitate regional comparisons and can highlight effects of climate change on ecosystem structure and function. Ecosystems that have experienced similar modification to that expected under climate change (for example, altered flow regimes of regulated rivers) can be used to help inform and evaluate predictions. By manipulating attributes of these system models (for example, magnitude of climatic changes or adaptation strategies used), implications of various scenarios can be assessed and optimal management strategies identified.  相似文献   

3.
Urban development is a leading cause of stream impairment that reduces biodiversity and negatively affects ecosystem processes and habitat. Out‐of‐stream restoration practices, such as stormwater ponds, created wetlands, and restored riparian vegetation, are increasingly implemented as management strategies to mitigate impacts. However, uncertainty exists regarding how effectively they improve downstream ecosystems because monitoring is uncommon and results are typically reported on a case‐by‐case basis. We conducted a meta‐analysis of literature and used response ratios to quantify how downstream ecosystems change in response to watershed development and to out‐of‐stream restoration. Biodiversity in unrestored urban streams was 47% less than that in reference streams, and ecological communities, habitat, and rates of nutrient cycling were negatively affected as well. Mean measures of ecosystem attributes in restored streams were significantly greater than, and 156% of, those in unrestored urban streams. Measures of biodiversity in restored streams were 132% of those in unrestored urban streams, and indices of biotic condition, community structure, and nutrient cycling significantly improved. However, ecosystem attributes and biodiversity at restored sites were significantly less than, and only 60% and 45% of, those in reference streams, respectively. Out‐of‐stream management practices improved ecological conditions in urban streams but still failed to restore reference stream conditions. Despite statistically significant improvements, assessing restoration success remains difficult due to few comparisons to reference sites or to clearly defined targets. These findings can inform future monitoring, management, and development strategies and highlight the need for preventative actions in a watershed context.  相似文献   

4.
Stable isotope ratios (δ13C and δ15N) have been used extensively to trace nutrients from Pacific salmon, but salmon transfer more than carbon and nitrogen to stream ecosystems, such as phosphorus, minerals, proteins, and lipids. To examine the importance of these nutrients, metrics other than isotopes need to be considered, particularly when so few studies have made direct links between these nutrients and how they affect riparian organisms. Our study specifically examined δ13C and δ15N of riparian organisms from salmon and non‐salmon streams in Idaho, USA, at different distances from the streams, and examined whether the quality of riparian plants and the body condition of invertebrates varied with access to these nutrients. Overall, quality and condition metrics did not mirror stable isotope patterns. Most notably, all riparian organisms exhibited elevated δ15N in salmon streams, but also with proximity to both stream types suggesting that both salmon and landscape factors may affect δ15N. The amount of nitrogen incorporated from Pacific salmon was low for all organisms (<20%) and did not correlate with measures of quality or condition, probably due to elevated δ15N at salmon streams reflecting historical salmon runs instead of current contributions. Salmon runs in these Idaho streams have been declining, and associated riparian ecosystems have probably seen about a 90% reduction in salmon‐derived nitrogen since the 1950s. In addition, our results support those of other studies that have cautioned that inferences from natural abundance isotope data, particularly in conjunction with mixing models for salmon‐derived nutrient percentage estimates, may be confounded by biogeochemical transformations of nitrogen, physiological processes, and even historical legacies of nitrogen sources. Critically, studies should move beyond simply describing isotopic patterns to focusing on the consequences of salmon‐derived nutrients by quantifying the condition and fitness of organisms putatively using those resources.  相似文献   

5.
Biological invasions are a major threat to biodiversity and ecosystem functioning. Forest invasion by alien woody species can have cross-ecosystem effects. This is especially relevant in the case of stream–riparian forest meta-ecosystems as forest streams depend strongly on riparian vegetation for carbon, nutrients and energy. Forest invasion by woody species with dissimilar characteristics from native species may be particularly troublesome. The invasion of temperate deciduous broadleaf forests with low representation of nitrogen (N)-fixing species by N-fixers has the potential to induce ecosystem changes at the stream level. Although effects of tree invasion on stream ecosystems have been under assessed, knowledge of native and invasive tree characteristics allows prediction of invasion effects on streams. Here we present a conceptual model to predict the effects of forest invasion by alien N-fixing species on streams, using as a background the invasion of temperate deciduous broadleaf forests by leguminous Acacia species, which are among the most aggressive invaders worldwide. Effects are discussed using a trait-based approach to allow the model to be applied to other pairs of invaded ecosystem–invasive species, taking into account differences in species traits and environmental conditions. Anticipated effects of N-fixing species invasions include changes in water quality (increase in N concentration) and quantity (decrease in flow) and changes in litter input characteristics (altered diversity, seasonality, typology, quantity and quality). The magnitude of these changes will depend on the magnitude of differences in species traits, the extent and duration of the invasion and stream characteristics (e.g. basal nutrient concentration). The extensive literature on effects of nutrient enrichment of stream water, water scarcity and changes in litter input characteristics on aquatic communities and processes allows prediction of invasion effects on stream structure and function. The magnitude of invasion effects on aquatic communities and processes may, however, depend on interactions among different pathways (e.g. effects mediated by increases in stream nutrient concentration may contrast with those mediated by decreases in water availability or by decreases in litter nutritional quality). A review of the literature addressing effects of increasing cover of N-fixing species on streams suggests a wide application of the model, while it highlights the need to consider differences in the type of system and species when making generalizations. Changes induced by N-fixing species invasion on streams can jeopardize multiple ecosystem services (e.g. good quality water, hydroelectricity, leisure activities), with relevant social and economic consequences.  相似文献   

6.
Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams   总被引:4,自引:0,他引:4  
Stoichiometric analyses can be used to investigate the linkages between N and C cycles and how these linkages influence biogeochemistry at many scales, from components of individual ecosystems up to the biosphere. N-specific NH4+ uptake rates were measured in eight streams using short-term 15N tracer additions, and C to N ratios (C:N) were determined from living and non-living organic matter collected from ten streams. These data were also compared to previously published data compiled from studies of lakes, ponds, wetlands, forests, and tundra. There was a significant negative relationship between C:N and N-specific uptake rate; C:N could account for 41% of the variance in N-specific uptake rate across all streams, and the relationship held in five of eight streams. Most of the variation in N-specific uptake rate was contributed by detrital and primary producer compartments with large values of C:N and small values for N-specific uptake rate. In streams, particulate materials are not as likely to move downstream as dissolved N, so if N is cycling in a particulate compartment, N retention is likely to be greater. Together, these data suggest that N retention may depend in part on C:N of living and non-living organic matter in streams. Factors that alter C:N of stream ecosystem compartments, such as removal of riparian vegetation or N fertilization, may influence the amount of retention attributed to these ecosystem compartments by causing shifts in stoichiometry. Our analysis suggests that C:N of ecosystem compartments can be used to link N-cycling models across streams.  相似文献   

7.
Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long‐term warming rates of 0.1–0.2 °C decade?1 indicate that isotherms shift upstream at 0.13–1.3 km decade?1 in steep streams (2–10% slope) and 1.3–25 km decade?1 in flat streams (0.1–1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5–43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5–143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short‐term variation associated with interannual stream temperature changes will mask long‐term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases on stream biotas.  相似文献   

8.
  1. Although extreme hydrological events are a natural component of river ecosystem disturbance regimes, their frequency is predicted to increase with climate change. Anthropogenic activities have the potential to exacerbate the impact of such disturbances but there are few studies on the combined effects of both anthropogenic and extreme hydrological disturbances on stream ecosystems.
  2. We investigated the recovery of stream ecosystems over a 5-year period following the impact of an anthropogenic (forest clear-cut harvesting) and an extreme rainfall disturbance (estimated one-in-100 year average return interval) that generated debris flows in three headwater streams in New Zealand.
  3. Initially, most of the riparian vegetation was eliminated and showed little recovery 1 year later. Subsequent riparian recovery was led by wind-borne, light-demanding, pioneering exotic weed species, lengthening and altering the long-term successional and recovery trajectories to a pre-disturbance composition of indigenous shrubs.
  4. Stream shade, water temperature, and habitat had largely recovered after 5 years. However, the contribution of large wood to channel morphology and in-stream habitat was compromised due to diminished wood supplies in the stream channel and a hiatus in up-slope wood inputs until the riparian vegetation re-establishes and the next crop of trees matures.
  5. After an initial decline, most indigenous fish taxa thrived in the post-disturbance conditions, with significant increases in densities and biomass. The more sensitive fish taxa were scarce or absent, particularly those taxa that prefer pools with overhead and in-stream cover provided by riparian vegetation and wood. Recovery of these taxa was outside the time frame of this study. Riffle dwelling fish communities were more resilient than pool dwelling fish communities.
  6. Invertebrate densities showed a similar response to fish. Post-event invertebrate community composition differed from that typically found in post-harvest headwater streams, comprising comparatively lower proportions of Chironomidae, Oligochaetes, and Mollusca taxa, and higher proportions of Trichoptera taxa. Progression toward pre-event community composition was evident 5 years after the event.
  7. The compounding effect of forest removal from harvesting, along with riparian vegetation and wood removal by debris flows, lengthened the recovery of riparian vegetation and wood supplies with cascading effects on in-stream habitat and biological communities.
  相似文献   

9.
长白山二道白河森林流域溪流倒木调查研究   总被引:6,自引:2,他引:4  
邓红兵  王青春  潘文斌  周莉  代力民 《生态学报》2002,22(11):1896-1901
溪流倒木是森林生态系统对水生态系统最重要、最直观的输入和干扰之一,也是两系统之间的主要联结,对于溪流生态系统的稳定、水生生物多样性、河槽形态及其变化过程有着重要的作用。重点对长白山北坡溪流倒木现存量进行了调查和研究,在调查的红松阔叶林植被带内4500m长河道内,共发现溪流倒木425株.分属于17个树种;其中l、w级腐烂占相当大的比重,与林地倒木I、l级腐烂占忧有所不同,其原因可能与分解环境的不同有关。所有溪流倒木的总材积为77.98m^2,故溪流倒木的现存量为1.733m^3/100m和10.83m^3/hm^2。溪流倒木的树种组成和不同树种的材积与河岸带植被密切相关,但存在差异。研究表明林分形成倒木并进入河流在时间上可能是均匀或随机的,但不同树种间,其形成倒木并进入河流时的树木材积或生长年龄存在较大差异。溪流倒木和林地活立木的个体数量的径级分布基本上为反J型,而它们材积的径级分布均为典型的J型。  相似文献   

10.
1. Headwater streams are a significant feature of the southern Appalachian landscape, comprising more than 70% of the total stream length in the region. Salamanders are the dominant vertebrate within headwater‐riparian forest ecosystems, but their ecological role is not clearly understood. 2. We studied a population of black‐bellied salamanders (Desmognathus quadramaculatus) at a headwater stream in the southern Appalachian Mountains using radio‐telemetry and mark‐recapture methods. The length and area of headwater streams in the region were estimated using GIS. 3. Home ranges of radio‐tracked salamanders were relatively small (mean = 1.06 m2). Adult salamanders in our telemetry study inhabited edge microhabitats significantly more often than either stream or riparian microhabitats, and the same trend was observed in the mark‐recapture study. 4. We estimated the population density at this site to be 11 294 salamanders ha?1, amounting to 99.30 kg ha?1 of biomass, an estimate that is six times greater than reported in previous studies. The majority of this biomass was found within the stream, but 22% was found in the surrounding riparian habitat more than 1 m from the stream. Using headwater stream length and area estimates, we extrapolated biomass estimates for black‐bellied salamanders inhabiting stream and riparian microhabitats across the study region. 5. We report one of the largest estimates of secondary consumer biomass for a headwater ecosystem, attesting to the overall productivity of headwater streams. Headwaters are known to be important for ecological and ecosystem processes and our biomass estimates suggest that salamanders are a critical component to these systems.  相似文献   

11.
Straightened stream channels and altered and drained wetlands have adversely impacted streams and rivers throughout Midwestern USA, where some of the most dense drainage and riparian ecosystem alteration in the world have occurred. A segment of Grave Creek on The Ohio State University's Marion (OSU Marion) campus in Ohio, USA, with its lack of riparian ecosystems, illustrates the transformation of a natural fluvial ecosystem to an unstable and “simplified” aquatic environment that requires continued maintenance and provides little value to the surrounding landscape or to the university. However, the straight ditch, available adjacent riparian land and existing hydric soil give OSU Marion a great opportunity to demonstrate a project of stream and wetland restoration on a college campus. To restore the natural ecological stability of OSU Marion's “back yard” and to provide habitat improvement to Grave Creek and its surrounding landscape on the OSU Marion campus, we have designed a restoration of 1.1 km of Grave Creek meandering to the east of the existing sewer, using the two-stage channel techniques, and about 0.6–0.8 ha of adjacent wetland. We estimate that restoration on this scale will cost about US$ 200,000–300,000, not including monitoring of the results. To fulfill this project, it is likely that an opportunity for using this restoration in a stream/wetland loss mitigation will present itself in this region of Ohio while a long-term pre- and post-construction monitoring plan and more detailed design would be expected as the next step.  相似文献   

12.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

13.
Riparian forests play an important role in stream ecosystems, as they support biodiversity, reduce water erosion, and provide litter that fuels aquatic biota. However, they are affected by great array of anthropogenic threats (e.g., fire, logging, and organic pollution), which alter species composition and their physical structure. Although forest recovery after disturbance such as logging can take decades, the legacy of forest clear-cut logging on key processes in tropical riparian ecosystems is mostly unknown. Here, we investigated how litter inputs (leaves, twigs, and reproductive parts) and storage, key processes for carbon and nutrient recycling and for forest and stream biota, are influenced by riparian vegetation undergoing succession (after 28 years from logging) through the comparison of reference and logged forest sites in the Cerrado biome. Litterfall was overall similar between forest types, but litterfall of twigs was twofold higher at logged than reference sites. Similarly, litter inputs from the bank to the stream (i.e., lateral inputs) and streambed storage were 50–60% higher at logged than reference sites. The higher litterfall observed in logged forests could be related to higher proportion of tree species that are characteristic of primary and secondary successional stages, including fast-growing and liana species, which often are more productive and common in anthropogenic areas. Our results showed that the legacy impact of clear-cut logging, even if residual woody vegetation is maintained in riparian buffers, can shift the type, quantity, and seasonality of litter subsidies to tropical streams. This knowledge should be considered within the context of management and conservation of communities and ecosystem processes in the forest-stream interfaces.  相似文献   

14.
1. Trophic linkages between terrestrial and aquatic ecosystems are common and sensitive to disruption. However, there is little information on what causes variation in the strength and spatial scale of these linkages. 2. In the highly aquatic adults of the headwater salamander Gyrinophilus porphyriticus (family Plethodontidae), use of terrestrial prey decreases along a gradient from early‐ to late‐successional riparian forests. To understand the cause of this relationship, we tested the predictions that (i) terrestrial prey abundance is lower in late‐successional forests, and (ii) G. porphyriticus adults cannot move as far from the stream to forage in late‐successional forests, thus limiting access to terrestrial prey. 3. We established 100‐m long study reaches on six headwater streams in the Hubbard Brook Experimental Forest, New Hampshire. Three reaches were in early‐successional forests and three were in late‐successional forests. We conducted pitfall trapping for invertebrate prey in June and July of 2005, with three traps at 0, 2, 5 and 10 m from the stream at each reach. In June, July and August of 2004 and 2005, nighttime salamander surveys were conducted at each reach along ten, 10‐m long by 2.5‐m wide transects perpendicular to the stream. 4. Abundance of terrestrial prey was consistently lower in late‐successional forests, suggesting that consumption of terrestrial prey by G. porphyriticus is affected by prey abundance. Contrary to our prediction, G. porphyriticus adults moved farther from the stream in late‐successional forests, suggesting that habitat conditions in late‐successional forests do not limit movement away from the stream, and that lower abundances of terrestrial prey in these forests may cause salamanders to move farther from streams. 5. Our results provide novel insight on the extent of terrestrial habitat use by G. porphyriticus. More broadly, these results indicate that major habitat gradients, such as forest succession, can affect the strength and scale of terrestrial‐aquatic linkages. Application of this insight to the design of vegetation buffers along headwater streams would have widespread benefits to freshwater ecosystems.  相似文献   

15.
Ice storms are an important and recurring ecological disturbance in many temperate forest ecosystems. In 1998, a severe ice storm damaged over ten million hectares of forest across northern New York State, eastern Canada, and New England impacting ecosystem processes across the landscape. This study investigated the spatial arrangement of forest damage at the terrestrial-aquatic interface, an ecological edge of importance to aquatic habitat and nutrient cycling. Vegetation indices, derived from satellite imagery and field-based data, were used to measure forest canopy damage across a 2045 km2 region in northern New York State affected by the 1998 storm. We investigated the forest damage gradient in the riparian zone of 13 stream segments of varying size (92.5 km total length) and 13 lakes (37.4 km of shoreline). Large streams (-fourth and fifth order), occurring in forests that received modest ice damage (<15% disturbance coverage), exhibited significantly more damage in the riparian zone within 25 m of the water than in adjacent forest sections; F(3,12) = 7.3 P = 0.005. In similar moderately damaged forests, lake shorelines were significantly more damaged than interior forests; F(3,9) = 6.4 P = 0.013. Analysis of transitions in damage intensity revealed that canopy disturbance followed a decreasing trend (up to 3.5 times less) with movement inland from the terrestrial-aquatic interface. The observed predisposition of forest to disturbance along this ecosystem interface emphasizes the role of the physical landscape in concentrating the movement of wood from the forest canopy to locations proximate to water bodies, thus reinforcing findings that ice storms are drivers of ecological processes that are spatially concentrated.  相似文献   

16.
Restoring Stream Ecosystems: Lessons from a Midwestern State   总被引:3,自引:0,他引:3  
Reach‐scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach‐scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on‐site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream‐relocation projects that combined riparian and in‐stream enhancements. Fewer than half of the restorations conducted pre‐ or post‐restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On‐site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations.  相似文献   

17.
1. Stream and riparian ecosystems in arid montane areas, like the interior western United States, are often just narrow mesic strands, but support diverse and productive habitats. Meadows along many such streams have long been used for rangeland grazing, and, while impacts to riparian areas are relatively well known, the effect of livestock grazing on aquatic life in streams has received less attention. 2. Attempts to link grazing impacts to disturbance have been hindered by the lack of spatial and temporal replication. In this study, we compared channel features and benthic macroinvertebrate communities (i) between 16 stream reaches on two grazed allotments and between 22 reaches on two allotments where livestock had been completely removed for 4 years, (ii) before and after the 4‐year grazing respite at a subset of eight sites and (iii) inside and outside of small‐scale fenced grazing exclosures (eight pairings; 10+ year exclosures) in the meadows of the Golden Trout Wilderness, California (U.S.A.). 3. We evaluated grazing disturbance at the reach scale in terms of the effects of livestock trampling on per cent bank erosion and found that macroinvertebrate richness metrics were negatively correlated with bank erosion, while the percentage of tolerant taxa increased. 4. All macroinvertebrate richness metrics were significantly lower in grazed areas. Bank angle, temperature, fine sediment cover and erosion were higher in grazed areas, while riparian cover was lower. Regression models identified riparian cover, in‐stream substratum, bank conditions and bankfull width‐to‐depth ratios as the most important for explaining variability in macroinvertebrate richness metrics. 5. Small‐scale grazing exclosures showed no improvements for in‐stream communities and only moderate positive effects on riparian vegetation. In contrast, metrics of macroinvertebrate richness increased significantly after a 4‐year period of no grazing. 6. The success of grazing removal reported here suggests that short‐term removal of livestock at the larger, allotment meadow spatial scale is more effective than long‐term, but small‐scale, local riparian area fencing, and yields promising results in achieving stream channel, riparian and aquatic biological recovery.  相似文献   

18.
In forested streams, surrounding riparian forests provide essential supplies of organic matter to aquatic ecosystems. We focused on two pathways of particulate organic matter inputs: direct input from upper riparian forests and indirect lateral input from bank slopes, for which there are limited quantitative data. We investigated the inputs of coarse particulate organic matter (CPOM) and carbon and nitrogen in the CPOM into the uppermost reaches of a headwater stream with steep bank slopes in Hokkaido, Japan. CPOM collected by litter traps was divided into categories (e.g., leaves, twigs) and weighed. Monthly nitrogen and carbon inputs were also estimated. The annual direct input of CPOM (ash-free dry mass) was 472 g m−2, a common value for temperate riparian forests. The annual lateral CPOM input was 353 g m−1 and 941 g m−2 when they were converted to area base. This value surpassed the direct input. Organic matter that we could not separate from inorganic sediments contributed to the total lateral input from the bank slopes (124 g m−1); this organic matter contained relatively high amounts of nitrogen and carbon. At uppermost stream reaches, the bank slope would be a key factor to understanding the carbon and nitrogen pathways from the surrounding terrestrial ecosystem to the aquatic ecosystem.  相似文献   

19.
Leveraging existing presence records and geospatial datasets, species distribution modeling has been widely applied to informing species conservation and restoration efforts. Maxent is one of the most popular modeling algorithms, yet recent research has demonstrated Maxent models are vulnerable to prediction errors related to spatial sampling bias and model complexity. Despite elevated rates of biodiversity imperilment in stream ecosystems, the application of Maxent models to stream networks has lagged, as has the availability of tools to address potential sources of error and calculate model evaluation metrics when modeling in nonraster environments (such as stream networks). Herein, we use Maxent and customized R code to estimate the potential distribution of paddlefish (Polyodon spathula) at a stream‐segment level within the Arkansas River basin, USA, while accounting for potential spatial sampling bias and model complexity. Filtering the presence data appeared to adequately remove an eastward, large‐river sampling bias that was evident within the unfiltered presence dataset. In particular, our novel riverscape filter provided a repeatable means of obtaining a relatively even coverage of presence data among watersheds and streams of varying sizes. The greatest differences in estimated distributions were observed among models constructed with default versus AICC‐selected parameterization. Although all models had similarly high performance and evaluation metrics, the AICC‐selected models were more inclusive of westward‐situated and smaller, headwater streams. Overall, our results solidified the importance of accounting for model complexity and spatial sampling bias in SDMs constructed within stream networks and provided a roadmap for future paddlefish restoration efforts in the study area.  相似文献   

20.
  • 1 Twenty‐five pairs of North American beavers Castor canadensis Kuhl were introduced to Tierra del Fuego Island in 1946. The population has expanded across the archipelago, arriving at the Chilean mainland by the mid‐1990s. Densities range principally between 0.5–2.05 colonies/km. They have an impact on between 30–50% of stream length and occupy 2–15% of landscape area with impoundments and meadows. Beaver impacts constitute the largest landscape‐level alteration in subantarctic forests since the last ice age.
  • 2 The colonization pattern, colony densities and impacted area indicate that habitat in the austral archipelago is optimal for beaver invasion, due to low predator pressure and suitable food resources. Nothofagus pumilio forests are particularly appropriate habitat, but a more recent invasion is occurring in adjacent steppe ecosystems. Nonetheless, Nothofagus reproductive strategies are not well adapted to sustain high beaver population levels.
  • 3 Our assessment shows that at the patch‐scale in stream and riparian ecosystems, the direction and magnitude of exotic beaver impacts are predictable from expectations derived from North American studies, relating ecosystem engineering with underlying ecological mechanisms such as the relationships of habitat heterogeneity and productivity on species richness and ecosystem function.
  • 4 Based on data from the species' native and exotic range, our ability to predict the effects of beavers is based on: (i) understanding the ecological relationships of its engineering effects on habitat, trophic dynamics and disturbance regimes, and (ii) having an adequate comprehension of the landscape context and natural history of the ecosystem being engineered.
  • 5 We conclude that beaver eradication strategies and subsequent ecosystem restoration efforts, currently being considered in southern Chile and Argentina, should focus on the ecology of native ecosystems rather than the biology of this invasive species per se. Furthermore, given the nature of the subantarctic landscape, streams will probably respond to restoration efforts more quickly than riparian ecosystems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号