首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wetland creation is a common practice for compensatory mitigation in the United States. Vegetation attributes have been used as a quick measure of mitigation success in most post-creation monitoring, while little attention has been paid to soils that provide the substrate for flora and fauna to establish and develop. Created wetland soils are often found not indicative of ‘hydric soil’ with a lack of development of physicochemical properties (i.e., bulk density, moisture content, and carbon and nitrogen contents) comparable to those in natural wetlands. Moreover, soil bacterial communities are rarely examined though they are integrally involved in biogeochemical functions that are critical for ecosystem development in created wetlands. We analyzed soil physicochemistry and profiled soil bacterial community structure using amplicon length heterogeneity polymerase chain reaction (LH-PCR) of 16S ribosomal DNA in three relatively young wetlands (<10 years old) created in the Piedmont region of Virginia. We examined the data by site and by specific conditions of each site (i.e., induced microtopography and hydrologic regime). Multidimensional scaling (MDS) and analysis of similarity (ANOSIM) showed clear clustering and significant differences both in soil physicochemistry (Global R = 0.70, p = 0.001) and in soil bacterial community profiles (Global R = 0. 77, p = 0.001) between sites. Soil physicochemistry (Global R = 1, p = 0.005) and bacterial community structure (Global R = 0.79, p = 0.005) of soils significantly differed by hydrologic regime within a wetland, but not by microtopography treatment. A significant association was found between physicochemistry and bacterial community structure in wetland soils, revealing a close link between two attributes (ρ = 0.39, p = 0.002). C/N (carbon to nitrogen) ratio was the best predictor of soil bacterial community patterns (ρ = 0.56, p = 0.001). The diversity of soil bacterial community (Shannon's H′) differed between sites with a slightly higher diversity observed in a relatively older created wetland, and seemed also fairly determined by hydrologic regime of a site, with a relatively dry site being more diverse.  相似文献   

3.
The salinity problem is becoming increasingly widespread in arid countries. In semiarid Tunisia about 50% of the irrigated land is considered as highly sensitive to salinization. To avoid the risk of salinization, it is important to control the soil salinity and keep it below plant salinity tolerance thresholds. The objective of the present study was to provide farmers and rural development offices with a tool and methodology for predicting, monitoring of soil salinity for a better agronomical strategy. The experiments were carried out in the highly complex and heterogeneous semiarid Kalâat Landalous irrigated district of Tunisia. The field and laboratory measurements of soil and water properties were conducted in 1989 and 2006 at different observation scales (2900 ha, 1400 ha, 5200 m long transect, and soil profiles). Seventeen years of reclamation of a saline and waterlogged soil led to the reduction of average electrical conductivity of the soil saturated paste extract (ECe), measured at 5 soil depths (from 0 to 2 m) below the plant salt tolerance threshold and the dilution of groundwater salinity from 18.3 to 6.6 dS m−1. The variation in soil salt storage (ΔMss = Mss2006  Mss1989) in the vadose zone was negative, equal to about −145 × 103 ton (≈−50 ton ha−1). During the same period, the salt balance (Siw–Sdw) estimated from the input dissolved salt brought by irrigation water (Siw) and output salts exported by the drainage network (Sdw) was equal to −685 × 106 kg and the Sdw was 945 × 106 kg. Under irrigation and efficient drainage, the soil salinization could be considered as a reversible process. At the transect scale, the high clay content and the exchangeable sodium percentage was negatively correlated to saturated hydraulic conductivity. The textural stratification, observed at soil profile scale, favors accumulation of salt in the soil. Based on the findings related to the multiscale assessment of soil salinity and groundwater properties, soil salinization factors were identified and a soil salinization risk map (SRU) was elaborated. The shallow groundwater constitutes the main risk of soil salinization. This map can be used by both land planners and farmers to make appropriate decisions related to crop production, and soil and water management.  相似文献   

4.
The roughness of snow influences the movement of air across the snow surface and resulting transfers of energy. Here we focus on the roughness of the snowpack surface to determine its range of variability for different snow conditions (e.g., time since last snowfall), across spatial scales that ranged from 0.01 cm (card) to more than 1000 cm (transect) or more than 5-orders of magnitude, and due to the deposition of aeolian constituents. Digital photogrammetry of snow surfaces was used to compute two roughness metrics at two mountain sites in north-central Colorado. These metrics are the random roughness (RR) that disregards the spatial structure and the fractal dimension (D) computed from variogram analysis.At the crystal scale, D is between 1.67 (card) and 1.60 (board), which increases to 1.77 between 0.1 and 1.0 cm. At longer scales, D is 1.53 (board) to 1.56 (transect). There was no significant change in surface roughness during the accumulation season, with RR values at about 0.002. During the melt season the surface roughness doubled, with the RR values increasing from about 0.002 to 0.004. Snow was more rough parallel to the wind when dunes were present, and roughness varied spatially. The average RR value computed for the white snow surface of 0.014 is substantially greater than the value computed for the red dust surface of 0.0032. Due to undulations of smaller amplitude and as a result of the dust itself, the red dust surface is more random (D is 2.62 versus 2.23 for the white snow). Our results show that there is consistency in roughness over different scales, yet large scale processes (e.g., wind and radiation activity) influence the magnitude of roughness metrics much more than small scale processes (e.g., crystal form and metamorphism).  相似文献   

5.
Forests play an important role in sequestrating atmospheric CO2; therefore, understanding the spatial variations and controlling mechanisms of forest carbon (C) storage is important. In this study, we collected data on forest C storage along a north-south transect of eastern China from literature published between 2004 and 2014. The collected data, which were from over 2000 plots, allowed us to explore the latitudinal patterns in forest C storage. The results showed that vegetation C storage decreased with increasing latitude, while soil C storage increased. This spatial pattern of vegetation C storage was more apparent for mature forests (forest age > 80 years). Furthermore, latitudinal patterns in forest C storage, both in vegetation and in soil, became stronger with increasing statistical scale, increasing from plot scale to latitudinal scale (2–5°). However, total forest C storage (vegetation + soil) had no apparent latitudinal pattern. Interestingly, the allocation ratios of forest C storage between vegetation and soil had a negative logarithmic relationship with latitude. These results suggest that in eastern China, climatic factors control latitudinal patterns in the forest C storage of vegetation and soil, albeit in different ways (positive for vegetation and negative for soil), and also control the allocation ratios of forest C storage between vegetation and soil. Furthermore, the latitudinal patterns of forest C storage were opposite for vegetation and soil, resulting from the different climatic controlling mechanism.  相似文献   

6.
In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees.  相似文献   

7.
We studied the growth and photosynthesis of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil and the effects of soil N load, to determine the performance of this species as reforestation material in serpentine regions. We prepared 16 experimental plots (2 m × 4 m each), eight on serpentine and eight on brown forest soil, and planted one-year-old cutting seedlings of the hybrid larch F1 in each plot, in May 2007. Ammonium sulfate was supplied to half of the plots of each soil type in 2008 and 2009, at a load of 47 kg N ha−1 year−1. Although the growth and photosynthetic capacity of hybrid larch F1 seedlings in the serpentine soil were limited, the rate of growth in serpentine soil was greater than that of Sakhalin spruce (Picea glehnii) that is dominant species in serpentine regions. There was significant interaction between soil type and N load for the growth and photosynthetic parameters. The N load adversely affected growth and photosynthetic parameters in the serpentine soil, while improved them in brown forest soil. Although the growth rate of hybrid larch F1 without N loading showed high potential as an afforestation species in serpentine region, increasing deposition of N might be a threat to the growth and photosynthesis of the hybrid larch F1 in serpentine soil.  相似文献   

8.
Assessing and monitoring populations of elusive species frequently rely on the identification of indirect signs such as faeces. The absence of signs does not necessarily denote the absence of a species, thus, the ability to determine the presence/absence is susceptible to false negative results. The probability of detection is central to the interpretation and utility of data from field sign surveys. A low probability of detection may introduce considerable error into distribution patterns, resulting in inaccurate ecological conclusions.We used a systematic resampling approach, based on sequential spatial replication of spraint surveys, to investigate the probability of detecting Eurasian otters (Lutra lutra L.) with different survey designs. This included the standard otter transect survey methodology, which is widely used in conservation and scientific studies. In particular, we focus on the impact of applying broad scale population assessment techniques at smaller spatial scales. Fortnightly catchment-level otter surveys were undertaken on four lowland rivers in South Wales, over a period of two years. GIS was used to construct binary vectors for each survey, denoting the presence (1) or absence (0) of otters at each 50 m section of river. Vectors from all study rivers were pooled and resampled to test the different survey designs. The mean probability of detecting otters based on the standard protocol of a single 600 m transect survey was very low (0.26 ± 0.01 SE). The best way of obtaining a detection probability of 0.8 was to undertake three repeat surveys at two separate sites, using a transect of 800–1000 m.We demonstrate how sequentially collected spatial data can be analysed to determine the reliability of field sign surveys. Increasing the number of visits and study sites was a more efficient means of improving detection power than increasing transect length alone. The study emphasises the importance of determining detection probabilities and designing field sign surveys according to study scale and objectives. Our findings question the value of survey designs that aim to provide an instantaneous assessment of species presence/absence.  相似文献   

9.
Human bone marrow-derived mesenchymal stem cell (hMSCs) function depends on chemical factors and also on the physical cues of the microenvironmental niche. Here, this physical microenvironment is recapitulated with controlled modes of mechanical strain applied to substrata containing three-dimensional features in order to analyze the effects on cell morphology, focal adhesion distribution, and gene expression. Ten percentage of strain at 1 Hz is delivered for 48 h to hMSCs cultured on flat surfaces, or on substrata with 15 μm-high microtopographic posts spaced 75 μm apart. Adding strain to microtopography produced stable semicircular focal adhesions, and actin spanning from post to post. Strain dominated over microtopography for expression of genes for the cytoskeleton (caldesmon-1 and calponin 3), cell adhesion (integrin-α2, vinculin, and paxillin), and extracellular matrix remodeling (MMP13) (p < 0.05). Overall, attention to external mechanical stimuli is necessary for optimizing the stem cell niche for regenerative medicine.  相似文献   

10.
This research represents one of the first studies in Amazonia to examine soil moisture and water-use efficiency (WUE) in secondary forest (SF) vegetation regrowing on abandoned pastures subjected to reduced nutrient constraints via a nutrient addition experiment. Extensive forested areas (about 80% of deforestation) have been converted to pastures in Amazonia, which were later abandoned following soil degradation and reduction in grass productivity. Colonization of these areas proceeds through species adapted to adverse edaphic conditions, such as low soil nutrients. Yet there is little data from such environments showing the interaction of soil nutrients and water availability on plant physiological processes. The objective of this study was to test whether three common SF tree species have positive physiological responses, e.g. increased photosynthesis and water-use efficiency, when nutrient limitations are relaxed through fertilization. The experiment was conducted on an abandoned pasture in central Amazonia with 6-year-old secondary vegetation following the application of four treatments: control; +phosphorus (P); +phosphorus and lime (P + Ca); and +phosphorus, lime and gypsum (P + Ca + G). The control had higher mean soil moisture at 140 and 180 cm depth at the end of the dry season, indicating that the treatment plots responded positively to fertilizer additions by taking up additional water. Trees of Vismia japurensis and Bellucia grossularioides growing on the fertilized plots had the highest net photosynthesis rates (A) (18.7 and 20.4 μmol m?2 s?1, respectively). The three species utilized different strategies with regard to physiological and nutritional response, with V. japurensis, regardless of treatment, using these limiting resources most efficiently to colonize abandoned pastures. Trees growing on the P + Ca but not +P alone plots increased A rates, indicating that Ca is an important limiting nutrient in post-pasture secondary succession. The addition of Ca as ash by burning primary and secondary vegetation could explain the rapid growth and dominance of V. japurensis in abandoned pasture areas in central Amazonia. The efficiency of Vismia to use limiting resources could lead to a restructuring of SF and altered rates of stand-level productivity.  相似文献   

11.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

12.
《Acta Oecologica》2007,31(2):151-157
One consequence of human-induced changes in fire regimes has been the invasion of fire-prone Mediterranean ecosystems by weeds from more mesic habitats. In southern Australia, the tree Pittosporum undulatum Vent. has established in new areas, causing a serious reduction in floristic and structural diversity. Pittosporum undulatum has a high competitive ability and creates an environment that favours its own progeny at the expense of other species, making control difficult. We tested the hypothesis that fire effectively disrupts this invasion cycle by (1) eliminating the soil and canopy seed bank, (2) reducing the competitive ability of adults, and (3) minimising the number of sites favourable to invasion. To test this, the ability of P. undulatum to re-establish after a prescribed burn was estimated in a field study. The field data were then compared with the experimentally determined sensitivity of seeds and seedlings to elevated temperatures. The experimentally determined combination of temperatures and exposure time required for seed mortality (90–120 °C, depending on duration) was such that most seed stored in the canopy would be killed by prescribed burning. In addition, 90% of seedlings (ca. 0.4 m tall) were killed when heated to 180 °C for 5–10 min in the laboratory, consistent with the observed 100% seedling mortality in the burnt plots. Of the adult trees, 20% resprouted within 6 months of the fire. We conclude that the temperatures associated with wildfires are sufficient to act as a circuit breaker on the invasion cycle allowing other control measures, such as poisoning and weeding to be employed to greater effect.  相似文献   

13.
Drainage and shrub expansion are the main threats to the biodiversity of fens and fen meadows, whereas rewetting and the removal of shrubby species are frequently applied restoration measures. We examine whether removal of shrubs enhances recovery of target species in a degraded fen subjected to moderate rewetting. The study was located in the drained fen Ca?owanie (central Poland), where remnants of open fen communities and willow-invaded fens exist in former turf-pits, surrounded by degraded meadows on dried peat. All these three habitat types were included in a monitoring grid, which covered an area of 2.2 ha. Within 55 quadrats of 20 m × 20 m we monitored occurrence of 52 species, i.e. two groups of target species (fen indicators and wet meadow indicators) and indicators of two failure scenarios (degraded fen indicators and eutrophic wetland indicators), during six years following shrub removal, rewetting and re-application of conservational mowing, using a 3-step ordinal abundance scale. NMDS ordination revealed a gradual convergence of shrub removal plots and reference plots. We noticed significant effects of year and habitat type on all indicator groups, but only fen indicators have shown a clear (increasing) trend within shrub removal plots. Degraded fen indicators (ruderal and opportunistic species) initially expanded on shrub removal plots, but this effect disappeared in the following years. We conclude that shrub removal enhances establishment of target species in a moderately drained and then rewetted fen and attribute this effect to lowered competition for light. However, given high costs of this method and long-lasting problems with shrub resprouts, we recommend applying shrub removal only to recently overgrown sites, which still retained high botanical diversity. Heavily degraded fen meadows did not react on the increase of moisture, which indicates that more advanced restoration measures, such as top soil removal are needed there.  相似文献   

14.
Using semivariograms and fractal dimension (D), we identified the spatial variation of penetration resistance (PR) in variously compacted silty loam in the Lublin region, South-East Poland. Four compaction treatments were as follows: zero traffic (0p), one pass of tractor (1p), three passes of tractor (3p), and (8p) eight passes. Penetration resistance was measured in a square net of 0.6 m × 0.6 m with grid density of 0.05 m, in horizontal planes at depths of 0.05, 0.15, 0.25, 0.35, 0.45 and 0.55 m in each traffic treatment. The data were analysed in 6 horizontal planes and 12 vertical planes. The vertical planes were obtained by transforming the measured data along one side of the square at every 0.05 m. Total number of penetrations was 864. Fractal dimension (D) was estimated from the slope of the log–log semivariogram plots. The semivariograms showed spatial autocorrelation of penetration resistance in the horizontal and vertical planes. Direction in space was important in this study. In the horizontal planes the differentiation of penetration resistance semivariance at different depths was considerable and not clearly related with traffic intensity. In the vertical planes the semivariograms showed spatial dependence of the PR and evident decreasing of semivariance with increasing traffic intensity. Kriging-interpolated maps revealed that the differentiation of penetration resistance was higher in the vertical than in the horizontal planes. The vertical differentiation was higher in 0p than in the remaining treatments. The overall mean fractal dimensions in the vertical planes increased with increasing compaction levels and can be a useful indicator of the compaction level. The opposite courses of fractal dimension in the vertical and horizontal planes indicate spatial anisotropy in distribution of penetration resistance.  相似文献   

15.
A field study was conducted at Little Topashaw Creek in northern Mississippi, aimed at expanding the limited database on the survivorship of Salix nigra (black willow) cuttings planted on riparian restoration sites. We tested the hypothesis that sediment moisture availability (deficit, excess) as mediated by sediment texture and depth to the prevailing water table is a major factor governing black willow survival during the initial stage of establishment following transplanting. Replicated plots were established across elevational gradients and a range of soil texture. Each plot contained 16 planted cuttings (2.5 cm diameter × 2.5 m length). Plot depth to water table, soil texture, and soil redox potential were measured. Plant gas exchange, leaf chlorophyll content, growth, and survival were monitored periodically over two growing seasons. Survival was best at low elevation compared to cuttings planted at mid- and high elevations. Poor survival and growth were noted for cuttings that encountered sediment moisture deficits in plots with coarse texture while the best cutting survival was recorded for intermediate sand content plots. Results indicated that plot location on the bank and soil texture are two important factors that influence riverbank restoration success. Therefore, any riparian restoration plan should include careful assessment of these factors prior to undertaking such efforts.  相似文献   

16.
The effect of secondary-treated wastewater irrigation of a short-rotation willow coppice on soil microbial parameters was evaluated twice in 3 years using microbiological and biochemical properties. The soil metabolically active microbial biomass, basal respiration, N-mineralization, potential nitrification, alkaline and acid phosphatase and dehydrogenase activities were measured. The microbial community metabolic profile was determined with Biolog EcoPlates and bacterial community structure was assessed using denaturing gradient gel electrophoresis. After 2 years, a significant increase had occurred in soil microbial biomass, respiration and nitrogen mineralization activity both in the irrigated and in the non-treated plots. Wastewater irrigation increased the soil potassium concentration and enhanced the activity of alkaline phosphatase. Plant growth and irrigation affected the nitrogen mineralization activity—the increase was twice as high in the control plots as in the irrigated plots after 2 years. Potential nitrification, acid phosphatase activity and microbial community metabolic activity did not differ significantly (P > 0.05) between the control and the irrigated plots during the study. The comparison of soil profiles indicated that the observed increases in the soil microbiological parameters were allocated to the upper 10 cm. The establishment of willow plants on the fields affected the microbial community structure, with an increased diversity and higher similarity among the planted plots after 2 years. From our results we conclude that the willow coppice affected the soil bacterial community structure and had a positive effect on soil biological activity. Irrigation with pre-treated wastewater affected soil chemical and biochemical properties.  相似文献   

17.
Populations of granivorous farmland birds have dramatically declined during recent decades in many European countries. Winter conditions and consequently, survival rates of farmland bird species during this critical period, are considered as one of the main causes of this negative trend. However, the importance of different habitat structures and connected food sources for successful overwintering in bird species has gained little attention so far in the Czech Republic. In this study we aimed to examine the role of habitat composition and food availability on winter distribution and abundance of three declining sedentary and granivorous bird species. During the winters 2009–2014, 149 villages in the Czech Republic were monitored for distribution and density of three farmland seed-eaters. House Sparrow was the most dominant species (88.6% of villages occupied; 4.32 ± 4.67 ind./100 m of transect), followed by Tree Sparrow (67.1% villages occupied; 1.83 ± 3.53 ind./100 m of transect) and Collared Dove (65.8% villages occupied; 0.72 ± 1.51 ind./100 m of transect). Occurrence of House and Tree Sparrow was significantly affected by the number of instances of poultry keeping. In both species, occupied villages showed a higher number of instances of poultry keeping. We did not find any such significant relationship for Collared Dove. Density of House Sparrow was significantly higher in villages with dairy farms, but we failed to find this relationship for Tree Sparrow and Collared Dove. Habitat preferences were similar for all three studied species. They positively responded to the proportion of shrubs/trees, the keeping of poultry, dairy farms and they avoided houses, arable land and grasslands. We conclude that poultry keepings and dairy farms can be important for studied species during the winter since they offer high food availability and good protection against predators. This suggestion is supported by the fact that long-term population decline has coincided with a long-term reduction in the keeping of poultry and dairy farms in the Czech Republic during the last 50 years.  相似文献   

18.
19.
Information regarding the simultaneous evaluation of tillage and fertilization on the soil biological traits in canola production is not available. Therefore, field experiments were conducted in 2007–2010 in a split plot based on randomized complete block design with three replications. Main plots consisted of conventional tillage (CT); minimum tillage (MT) and no tillage (NT). Six strategies of fertilization including (N1): farmyard manure (cattle manure); (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control, were arranged in sub plots. Results showed that the addition of organic manure increased the soil microbial biomass. No tillage system increased microbial biomass compared to other tillage systems. The activities of all enzymes were generally higher in the N4 treatment. The activity of phosphatase and urease tended to be higher in the no tillage treatment compared to the CT and MT treatments.  相似文献   

20.
《Small Ruminant Research》2007,68(2-3):222-231
Changes in soil bulk density and soil nutrient profiles are a major concern of dryland grain producers considering grazing sheep on cereal stubble fields. Our objective was to compare burned, grazed, tilled, trampled and clipped wheat stubble fields on changes in soil bulk density and soil nutrient profiles. Treatments were evaluated in a series of three experiments using a randomized complete block design and four replications at each site. Contrast statements were used to make pre-planned comparisons among treatments. For Experiment 1, treatments were fall tilled, fall grazed, spring grazed, fall and spring combined (Fall/Spr) grazed, and an untreated control. Five mature ewes were confined with electric fence to a 111 m2 plot for 24 h for fall and spring grazed plots resulting in a stocking rate of 452 sheeps d/ha. For Fall/Spr, the stocking rate was 904 sheeps d/ha. For Experiment 2, treatments were fall grazed, fall burned, fall tilled, and an untreated control. In Experiment 3, treatments were fall trampling by sheep, spring trampling by sheep, fall and spring combined (Fall/Spr) trampling by sheep, hand clipping to a stubble height of 4.5 cm, and an untreated control. Trampling treatments were done at the same stocking rates as grazing treatments but sheep were muzzled to prevent intake. In Experiment 1, post-treatment organic matter tended to be greater (P = 0.09) in the mean of the grazed treatments than control plots. In all of the experiments, change in soil bulk density, and soil nutrient profiles did not consistently differ (P > 0.07) among treatments in any manner that would suggest a detrimental impact of grazing sheep on small grain residue. These results indicate a strong potential for grazing sheep on grain stubble without adversely impacting soil bulk density or nutrient profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号