首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dike-pond system was a form of ecological engineering that was a component of successional dikes and ponds along the banks of the Pengxi River in the drawdown zone (DDZ) of the Three Gorges Reservoir (TGR). The application of science-based evaluation system was appropriate for the flows of emergy in this agricultural ecosystem. The Emergy Analysis (EmA) has the ability to transform different types of inputs to a common form to allow meaningful comparisons across different systems. This study made use of the emergy analysis that assessed two different types of farming methods in the DDZ of the TGR. One method was planning crops in a dike-pond system (model I), and the other method was conventional agriculture (model II). In addition, the Exergies of both yields of agriculture methods were calculated, and the Exergy and Emergy Density (ED) were combined to explore the quality of these methods. The results showed that the two models relied on different resources. The ED yield of both models were similar, but the emergy investment of model II was greater than that of model I. Model II also used less renewable energy input to the agricultural systems than model I. The agricultural emergy sustainability index (AESI) of model I system (AESI = 2.4 > 1) was greater than that of model II system (AESI = 0.5 < 1), which indicated that the sustainable development of model I was stronger than that of model II in the DDZ of the TGR. The ratio Exergy/Emergy density (Rex/em) in the two models of different agricultural system were 121.52 × 10−3 J/sej (Model I) and 24.19 × 10−3 J/sej (model II). Model I was greater than model II, and the result intimated that the model I agricultural system was a new method in the DDZ, but it was older and closer to the steady state than model II. The Emergy and Exergy analysis certifies that model I has a more acceptable and more sustainable development potential and is more stabilized in the DDZ of the TGR.  相似文献   

2.
In this paper, metabolic evaluation has been employed for better understanding the trends in urban environmental changes. Due to the urban activities cause impacts not only on local level but also a broader scale, Hybrid Emergy-LCA (HEML), a combining approach of Emergy Analysis (EMA) and Life Cycle Assessment (LCA) is structured to quantitatively investigate the mechanism. For the similarity across many emerging cities in China, a large-scale sub-urban residential area named Tian Tongyuan (TTY) in Beijing was chosen for testing the HEML. Objective indicators of live quality and negative impacts are both considered. Analysis indicates that the household Emergy input of TTY is 1.76E+16 sej/yr, while the prominent environmental impact is induced by Photochemical Oxidant Creation Potentials (POCP), 4.58E+05 g ethane eq./yr. The sustainable performance constructed by its live quality and environmental impacts of TTY is found as 98.80% as that of Beijing average. Mitigation polices on the building sector should be proposed because of its dominating impacts among various consuming ends of energy and materials.  相似文献   

3.
Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The goal of this study was to apply ecological engineering principles to fruit production system designs to maximize total emergy benefits and sustainability. The evaluations considered input structure, production efficiency, environmental impacts, economic viability and sustainability. The market effects on emergy exchange were assessed both for purchasing the inputs to production and for selling the fruit. These market effects were also considered in the evaluation of sustainability by using the Emergy Index for Sustainable Development (EISD), which was evaluated with and without taking the change in natural capital (i.e., soil organic matter) into consideration. The results showed that all three of the newly introduced systems are much more sustainable than the traditional banana production system. The guava production system had the highest value of the Emergy Sustainability Index (ESI = 0.40). The high price of wampee gave it the highest economic yield/cost ratio (4.87) and EISD (0.73). Emergy and economic evaluations are complementary methods, with emergy analysis shedding more light on environmental support and impacts of the production systems not considered in the market value, and economic analysis focusing on the effects of markets on fruit production. The Emergy Exchange Ratio (EER) was proposed as a bridge between emergy and economic evaluations for specific systems and/or processes.  相似文献   

4.
It is a major challenge to produce food and energy sustainably for the ever increasing world population as today's conventional food production and energy needs are met by the fossil based resources, causing enormous environmental load. A novel, combined food and energy (CFE) agro-ecosystem, was designed for sustainable production of food, fodder and energy without chemical inputs (fertiliser, herbicide and fungicide). The objective was an emergy synthesis of the CFE system compared to a conventional wheat (Triticum aestivum) production system to assess resource use efficiency. The emergy indices, used to assess the environmental performance and sustainability, exhibited contrasting differences between the two production systems in terms of outputs (Y), total emergy use, solar transformity, relative use of local renewable resources, environmental loading ratio (ELR), emergy yield ratio (EYR) and emergy sustainability index (ESI). The Y in the CFE consisted of grain, straw, fodder and woodchip production of 4020, 3580, 6100 and 10,000 kg/ha/yr respectively whereas Y in the conventional wheat consisted of 7250 and 3770 kg grain and straw/ha/yr respectively. The Y in the CFE was 81% (2.80E+11 J/ha/yr) higher with 13.5 times (6.40E+03 seJ/J) lower solar transformity compared to the Y (1.54E+11 J/ha/yr) and solar transformity (8.63E+04 seJ/J) in the conventional wheat, exhibiting highly resource intensive production in conventional wheat. The local renewables constituted 19.2% and 2.6% of the total emergy input in the CFE and the conventional wheat respectively with a corresponding lower ELR (4.21) and 22.5% higher EYR (1.26) in CFE compared to conventional wheat. CFE was more reliant on local renewable emergy flows and compatible with the local environment with higher ESI (0.30) compared to conventional wheat (0.03), where 64.5% of the total emergy input constituted chemical inputs. The study demonstrated that the innovative agro-ecosystem, exemplified by CFE, is considerably less resource demanding and more amenable to sustainable production, whether defined in terms of outputs, solar transformity, relative use of local renewable resources, EYR, ELR or ESI.  相似文献   

5.
The current energy crisis is a worldwide problem, and developing energy from biomass is considered an effective partial solution. Sheyang Saltern is located in a coastal area in East China. The administration of saltern cooperated with our Halophyte Research Lab to create a Five-year Plan of Biomass Energy on Saline Land. In this plan, 3330 ha of salt-tolerant oil plants will be planted on the coastal saline land in Sheyang Saltern, including 2664 ha of Ricinus communis and 666 ha of Kosteletzkya virginica (L.) presl. These plants will produce biomass energy from land that is not fit for common crops, and thus this plan will not affect crop production. Moreover, the biomass of plants will be fully utilized in a hierarchical way, guided by an ecological engineering design. Thus, more outputs and more profits will be gained by applying this plan. This study uses the emergy analysis to predict and analyze the saltern ecosystem's ecological potential and compare it with an existing system founded in 2007, a 33.3 ha field of the two plants in the saltern. Four main emergy indices of the two ecosystems, EYR, EIR, ELR and ESI, are calculated and compared. To better show the system's ecological potential, we establish a new emergy index-potential yield ratio (PYR). PYR is designed to measure artificial ecosystems’ potential output capacity. It reflects a system's potential to transform stored emergy into output emergy using ecological engineering technology. The value of the predicted system's PYR is as great as 225, indicating that the system has a bright future to develop salt-tolerant oil plants. The system's future ecological potential and additional ways to utilize the two plants – the use of ricin and tuberous roots, etc. are also discussed in this paper. Our results will be helpful to the government's policy making, and provides useful information for enterprises.  相似文献   

6.
This study was carried out to assess the land suitability for rainfed faba bean (Vicia faba L.) cultivation in Gonbad-Kavous region (Golestan province, north of Iran) using geographic information system (GIS) and analytical hierarchy process (AHP), the most common methods for evaluation of land use suitability. Several parameters were considered in this study, including the annual average, minimum and maximum temperatures, annual precipitation, slope, elevation, and some soil properties such as organic matter, pH, EC, texture, phosphorus, potassium, calcium, iron, and zinc. The environmental parameters and the classification system used in the this work are inspired by the United Nations Food and Agriculture Organization (FAO) method dedicated to land suitability. In determining the weights of parameters, expert opinions were consulted and the final land suitability map was generated in five classes. As evidenced by the results, it was estimated that 23.48% of the study area (48,354.5 ha) is highly suitable for faba bean cropping, while 25.38% (52,237.37 ha) is moderately suitable and 25.03% (51,522.85 ha) is marginally suitable. In addition, our results indicated that just 26.11% of total agricultural lands are non-suitable for crop production. The currently non-suitable (49,778.80 ha) and permanently non-suitable (3997.09 ha) classes are located in the north and northwest parts of Gonbad-Kavous township. Soil salinity, low organic matter, low precipitation, high Ca content, and deficiency of P and Fe contents were found to be key limiting factors in this area.  相似文献   

7.
“Discharge of treated wastewater and sewage sludge landfilling” are the most common practice, which poses threats to the local environment. In this work we first constructed a general sewage treatment ecosystem (STE) which integrated the three systems. Emergy synthesis, with several improved emergy-based indicators which considered the waste input contribution and impacts of emissions, was applied to evaluate two alternative scenarios (scenario 1: sewage treatment system + treated water discharge + sludge landfilling; scenario 2: sewage treatment subsystem + reclaimed water reuse subsystem + aerobic compost production subsystem) for Mingjingtan sewage treatment plant in Wanzhou City of Chongqing in China. Results point out the environmental pressure of scenario 2 is much smaller than scenario 1 although its economic performance is somewhat poorer than scenario 1, and finally the sustainability of scenario 2 is still much better than scenario 1. Therefore, the treated water and sewage sludge reuse can further improve the environmental benefit of the sewage treatment process; however, the STE should be optimized in order to enhance its economic benefit. The proposed methods can help policy-makers make decisions and guide designers and operators to improve the comprehensive performance of sewage treatment processes. In addition, this paper also briefly discusses wastewater integrated management strategy.  相似文献   

8.
《Small Ruminant Research》2007,67(1-3):64-69
Wheat (Triticum aestivum L.) pastures are increasingly being used for cool-season forages to complement range-based goat production systems in southern USA. Because goats are more selective than cattle, ideal nitrogen (N) fertilizer rates already established for wheat grazed by cattle may be different for goats. Weight gains of Boer X Spanish doe kids (average 17 kg) as well as forage yields and crude protein (CP), acid detergent fiber (ADF) and acid detergent lignin (ADL) concentrations were measured for two winter seasons on replicated wheat paddocks fertilized with 0, 56, 112 and 224 kg N/ha per season in split autumn/spring applications at Stephenville, TX, USA. Animals were stocked in the pasture at 20 head/ha from January to April 2003 (478 mm rainfall from September to March) and 2004 (355 mm rainfall). Available forage ranged from 50 to 200 kg/ha in January and from 2300 to 6300 kg/ha in April in the 0 and 224 kg N/ha paddocks, respectively. Crude protein dry matter (DM) concentration ranged from 25 to 34% (0 and 224 kg N/ha, respectively) in January, but down to 13 and 22% across treatments in April. Average daily gains (ADG) over the 90-day trial were similar both years, 68 g per head per day for the 0 N treatment and undifferentiated among the fertilized paddocks, all near 90 g per head per day. Results indicate that N fertilizer rates above 56 kg/ha per season do not increase ADG/kid, but will increase ADG/ha if stocking rates are adjusted for forage production.  相似文献   

9.
Society needs urgently good tools to understand the biosphere dynamics, become aware of Earth's biophysical limits and make appraisals of environmental performance of human dominated systems. In this context, the Ecological Footprint (EF) was suggested as one of the most important tools. But, according to calculations based on Emergy Analysis, the indicators of EF could underestimate the problem of human carrying support. EF does not consider the work of untouched nature in productivity and ecosystems services. In order to improve the EF results, the present study suggests: (a) to include the ecosystems not considered in conventional EF i.e. tundra, deserts and areas covered by ice; (b) to consider the value of Net Primary Production (NPP) in Emergy units (seJ m?2 year?1) as the base for the calculation of Equivalent Factors (EQF); (c) to account for the consumption of fossil energy used in collection, treatment and distribution of water for domestic use, for this the carbon emissions data (in tonC m?3 of water) were used. Introducing these changes to the conventional EF calculation and considering the Peruvian economy (in 2004) as the study case, the Biocapacity obtained was 14.31 gha capita?1 and the footprint was 6.68 gha capita?1. These values mean that Peru can support 2.14 times its population if the current life style is maintained, as opposed to the 4.0 times ratio obtained with a conventional EF calculation.  相似文献   

10.
Water and energy are closely connected and both are very important for human development. Wastewater treatment plants (WWTPs) are central to water–energy interactions as they consume energy to remove pollutants and thus reduce the human gray water footprint on the natural water environment. In this work, we quantified energy consumption in 9 different WWTPs in south China, with different treatment processes, objects, and capacities. The energy intensity in most of these WWTPs is in the range of 0.4–0.5 kWh/m3 in 2014. Footprint methodologies were used in this paper to provide insight into the environmental changes that result from WWTPs. A new indicator “gray water footprint reduction” is proposed based on the notion of gray water footprint to better assess the role of WWTPs in reducing human impacts on water resources. We find that higher capacity and appropriate technology of the WWTPs will result in higher gray water footprint reduction. On average, 6.78 m3 gray water footprint is reduced when 1 m3 domestic sewage is treated in WWTPs in China. 13.38 L freshwater are required to produce the 0.4 kWh electrical input needed for treating 1 m3 domestic wastewater, and 0.23 kg CO2 is emitted during this process. The wastewater characteristics, treatment technologies as well as management systems have a major impact on the efficiency of energy utilization in reducing gray water footprint via these WWTPs. The additional climate impact associated with wastewater treatment should be considered in China due to the enormous annual wastewater discharge. Policy suggestions are provided based on results in this work and the features of China's energy and water distribution.  相似文献   

11.
AimTo evaluate the differences in treatment response and the impact on survival with both oral agents (UFT and Capecitabine) as neoadjuvant chemotherapy administered concomitantly with radiotherapy.BackgroundThere are still no studies comparing the use of neoadjuvant oral chemotherapy either with UFT plus Folinic acid or Capecitabine concomitant with radiotherapy in locally advanced rectal cancer (LARC).Materials and methodsA set of 112 patients with LARC were treated preoperatively. GROUP 1 – 61 patients underwent concomitant oral chemotherapy with Capecitabine (825 mg/m2 twice daily). GROUP 2 – 51 patients submitted to concomitant oral chemotherapy with UFT (300 mg/m2/d) + Folinic acid (90 mg/d) and radiotherapy. 57.1% of patients were submitted to adjuvant chemotherapy.ResultsGROUP 1: acute toxicity – 80.3%; pathological complete response (pCR) – 10.5%; tumor downstaging (TD) – 49.1%; nodal downstaging (ND) – 76.5%; loco-regional response (LRR) – 71.9%; toxicity to adjuvant chemotherapy – 75%. GROUP 2: acute toxicity – 80.4%; pCR – 28%; TD – 62%; ND – 75.6%; LRR – 78%; toxicity to adjuvant chemotherapy – 56%. There was no difference in survival nor loco-regional control between the groups.ConclusionsPatients treated with neoadjuvant oral UFT + Folinic acid had a higher rate of pathologic complete response than patients treated with Capecitabine concomitant with radiotherapy. There were no differences in downstaging, LRR, toxicity, survival or loco-regional control between both groups. There was a trend to a higher rate of toxicity to adjuvant chemotherapy in the Capecitabine group.  相似文献   

12.
BackgroundMagnetic nanoparticles (MNPs) are at the leading edge of the field of biomedical applications and magnetic biosensing.MethodsMNPs were fabricated by electrophysical methods of the laser target evaporation (LTE) and spark discharge with electrodynamic acceleration of plasma jumpers (SD). Synthesis of polyacrylamide hydrogel was done in the presence of Fe2O3 MNPs in different concentrations obtained by LTE. [FeNi/Ti]3/Cu/[Ti/FeNi]3/Ti multilayers for giant magnetoimpedance (GMI) based sensitive elements were prepared by rf-sputtering for testing a biosensor prototype.ResultsIron oxide MNPs, ferrofluids, ferrofluids contacting with biological systems, synthetic ferrogels mimicking natural tissues – are the steps of the discussed in this work development of bionanomaterials. Thorough the structural and magnetic studies of a multilayered sensitive element, MNPs and ferrogels insure the complete characterization of biosensor prototype. The GMI responses were carefully evaluated in initial state and in the presence of ferrogel with known concentration of MNPs. SD MNPs had the smallest 5–8 nm size. This nanomaterial was characterized by large internal strains of the order of 25 × 10 3, which can play an important role for the interaction with different biosystems.ConclusionsIron oxide MNPs were fabricated by LTE and SD methods. SD MNPs had the smallest 5–8 nm size and large internal strains of the order of 25 × 10 3. Designed GMI biosensor prototype allowed precise evaluation of the stray field of the MNPs present in the ferrogel by evaluating the systematic changes of the GMI in a 20–400 MHz frequency range.General significanceThis work summarizes recent developments in the field of nanomaterials potentially applicable in magnetic biosensing.  相似文献   

13.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

14.
Despite of the generalized expansion of wild ungulates in Europe, roe deer (Capreolus capreolus) is experiencing contrasted population trends; it is expanding in some regions while declining in others likely due to the expansion of other deer species. In both extremes, reliable methods to estimate population abundance are required. We evaluated different methods of estimating deer abundance in Mediterranean woodlands based on pellet group counts. Distance Sampling applied to pellet counts and a new easier and cost-effective method based on strip-variable transect counts (FST) were assessed comparing their estimates (pellet group density) with the abundance indices obtained from traditionally used reference methods (faecal standing crop) in 61 localities (n = 183 surveys). The average roe deer density estimated from faecal standing crop was 5.56 ± 0.75 (range 0.01–20.74) deer per 100 ha. Distance Sampling and FST estimates correlated with reference methods. As a first conclusion it may be noted that all indirect methods used here can be used to estimate roe deer abundance. The selection of a given method based on pellet counts to estimate roe deer population abundance should take into account the specific objectives of the research, resources available, and the timescale in which the information is required. Among them, Distance Sampling may be used when human resources and skills are enough but FST is a rapid and efficient alternative to estimate pellet group density when they are not.  相似文献   

15.
Nitrate loss from drainage tiles across the cornbelt of the upper midwestern US is a result of intensive agriculture with limited crop diversity, extensive periods of fallow soil, and the need for high fertilizer applications to corn, all located on a hydrologically modified landscape. Two methods proposed to reduce tile nitrate export are managed or controlled drainage to limit tile flow and bioreactors to enhance denitrification. Nitrogen budgets and tile flow monitoring were conducted over two- to three-year periods between 2006 and 2009. We estimated N budgets in a seed corn-soybean rotation farming system near DeLand, east-central Illinois, USA, with free (FD) and controlled drainage (CD) patterned tile systems. In addition, wood chip filled trenches (bioreactors) were installed below the CD structures, one lined with plastic and one unlined. We measured daily tile flow and nitrate-N (NO3-N) concentrations and calculated cumulative N loss from the tile water at both FD and CD areas for a period of three cropping years. We also monitored the tile flow and nitrate concentration in inlet and outlet of the bioreactor associated with a CD system and evaluated the efficiency of the bioreactor for two cropping years. Most components of the N balance were unaffected by CD (yields and therefore N harvested, surface soil denitrification), and there was a negative N balance in the soybean cropping year (?165 and ?163 kg N ha?1 at FD and CD areas, respectively), whereas seed corn cropping in the following year resulted in positive N balances (29 and 34 kg N ha?1 at FD and CD areas, respectively). For two years, the overall N balances were ?136 and ?129 kg N ha?1 at FD and CD areas, respectively, consistent with other recent corn belt studies showing a small net depletion of soil organic N. Controlled drainage greatly reduced tile N export, with a three-year average loss of 57.2 kg N ha?1 yr?1 from FD compared to 17 kg N ha?1 yr?1 for CD. There was high uncertainty in denitrification measurements and thus the fate of missing N in the CD system remained unknown. Nitrate reduction efficiency of the bioreactor varied greatly, with periods where nearly 100% of the nitrate was denitrified. The overall efficiency of the bioreactor associated with the CD system in reducing the tile N load was 33%. When nitrate was non-limiting, the nitrate removal rate of the bioreactor was 6.4 g N m?3 d?1. Little N2O emission was found from the bioreactor bed and is not thought to be a problem with these systems. Both the tile bioreactor and controlled drainage greatly reduced tile nitrate export in this leaky seed corn and soybean agricultural field.  相似文献   

16.
The purpose of the study was to determine whether peroneal reaction time is influenced by ankle’s impairment in subjects with ankle injury assessed by surface electromyography. The studies were identified by electronic research by two independent reviewers at the following databases: MEDLINE (1966–2009), EMBASE (1980–2009), LILACS (1982–2009), CINAHL (1982–2009) and, SPORTDiscus (1975–2009). Studies were divided into following groups: I – subjects with injury (paired by the opposite limb); II – subjects with or without injury (paired by limbs from different subjects) and III – subjects with or without injury (other situations). Studies that used the sudden ankle inversion test were selected. As result, 25 articles were included. The comparison of the reaction time paired by the opposite limb, showed a statistically significant difference in favor of the injured ankles (standardized mean difference – SMD = 0.40; IC 95% [0.01; 0.79], P = 0.05). The comparison paired by limbs from different subjects presented a statistically significant difference, in favor of the injured ankles (SMD = 3.49; IC 95% [1.26; 5.71], P = 0.002). The effect size measured was 0.54 and 1.61, respectively. The greater reaction time delay showed in the subjects with ankle injury compared to that of asymptomatic subjects should be taken into consideration.  相似文献   

17.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

18.
The sustainability of ecosystem productivity and rules governing ecosystem development are important topics of scientific research. The emergy approach is an effective method for investigating these topics, especially when used to evaluate systems that have developed under the same environmental conditions, such as climate and soil. In this paper, emergy differences between terrestrial ecosystems were studied in Guyuan County, a region representative of the agro-pastoral ecotone in Hebei Province, China. A combination of field tests and a questionnaire survey were carried out between June and August 2015. The ecosystems studied included natural grassland, artificial grassland, field crops and commercial crops. These four ecosystems were further subdivided into a total of ten ecosystems. Natural grassland was divided into free-grazing and mowed ecosystems; artificial grassland consisted of oat, Chinese leymus and corn silage; field crops included naked oats, flax and wheat; and commercial crops consisted of cabbage and potatoes. The results showed that the rain input of 4.78 × 1014 seJ/ha/yr constituted the highest renewable natural resource emergy and that the purchased emergy inputs of the ten ecosystems ranged from 3.53 to 147.67 × 1014 seJ/ha/yr. Natural resource emergy input was the basic power to maintain the ecosystem, and purchased emergy input was the direct cause of the development of the ecosystems. Groundwater was the most important non-renewable purchased energy for the production of economic crops. The emergy investment ratios (EIR) for potatoes (27.81) and cabbage (19.03) were higher than those of the other ecosystems, but mowed and artificial Chinese leymus grassland had the higher emergy self-sufficiency rates (ESR). Natural grassland, artificial Chinese leymus grassland and traditional grain crops had a low environmental load and high sustainability, whereas potatoes and cabbage had a high environmental load and low sustainability. Overall, rain-fed artificial grassland has a high development potential from the perspective of environment and productivity.  相似文献   

19.
The growing popularity of digital-repeat photography in field research is seeing traditional field efforts being assisted and even replaced by low-cost cameras. The efficiency of using cameras is obvious, but there is an assumption that they capture the same information as observations made by humans. This paper aims to determine the level of agreement between these two methods of interpreting understory vegetation phenology. We compared daily phenological observations made by low-cost cameras with those made by personnel during field visits every 10 days. Phenophases were defined as the non-spectral, physical developmental stages of Canadian buffaloberry (Shepherdia canadensis) and alpine sweetvetch (Hedysarum alpinum). The relationship between observation methods was quantified using a weighted kappa statistic at three spatial scales ranging from individual plants to areas up to 6 ha. Agreement between the camera observations and those made by field personnel was nearly perfect (Kappa > 0.9) for both the vegetative and reproductive phenology of both study species at all spatial scales. The level of agreement was found to be more variable early in the season when plant growth is more rapid. Overall there was a slight bias in the image interpretations to underestimate the rate of development. Time-lapse photography was found to be an analogous replacement for field visits; however, some plant species are more suitable for observation by camera than others. Spatially, it was determined that observations of a single plant are all that is required to capture the phenology of the surrounding region in excess of 6 ha. This analysis was carried out over a single growing season in the in the Rocky Mountains of western Alberta, Canada.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号