首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cytotherapy》2019,21(4):433-443
Critical limb ischemia, a severe manifestation of peripheral artery disease, is emerging as a major concern in aging societies worldwide. Notably, cell-based gene therapy to induce angiogenesis in ischemic tissue has been investigated as treatment. Despite many studies demonstrating the efficacy of this approach, better therapies are required to prevent serious sequelae such as claudication, amputation and other cardiovascular events. We have now established a simplified method to enhance the effects of therapeutic transgenes by selecting for and transplanting only transduced cells. Herein, mesenchymal stromal cells were transfected to co-express vascular endothelial growth factor as angiogenic factor and enhanced green fluorescent protein as marker. Transfected cells were then collected using flow cytometry based on green fluorescence and transplanted into ischemic hind limbs in mice. Compared with unsorted or untransfected cells, purified cells significantly improved blood perfusion within 21days, suggesting that transplanting only cells that overexpress vascular endothelial growth factor enhances therapeutic angiogenesis. Importantly, this approach may prove to be useful in cell-based gene therapy against a wide spectrum of diseases, simply by replacing the gene to be delivered or the cell to be transplanted.  相似文献   

3.
4.
《Cytotherapy》2014,16(12):1720-1732
Background aimsCD133+ cells confer angiogenic potential and may be beneficial for the treatment of critical limb ischemia (CLI). However, patient selection, blinding methods and end points for clinical trials are challenging. We hypothesized that bilateral intramuscular administration of cytokine-mobilized CD133+ cells in ambulatory patients with refractory CLI would be feasible and safe.MethodsIn this double-blind, randomized sham-controlled trial, subjects received subcutaneous injections of granulocyte colony-stimulating factor (10 μg/kg per day) for 5 days, followed by leukapheresis, and intramuscular administration of 50–400 million sorted CD133+ cells delivered into both legs. Control subjects received normal saline injections, sham leukapheresis and intramuscular injection of placebo buffered solution. Subjects were followed for 1 year. An aliquot of CD133+ cells was collected from each subject to test for genes associated with cell senescence.ResultsSeventy subjects were screened, of whom 10 were eligible. Subject enrollment was suspended because of a high rate of mobilization failure in subjects randomly assigned to treatment. Of 10 subjects enrolled (7 randomly assigned to treatment, 3 randomly assigned to control), there were no differences in serious adverse events at 12 months, and blinding was preserved. There were non-significant trends toward improved amputation-free survival, 6-minute walk distance, walking impairment questionnaire and quality of life in subjects randomly assigned to treatment. Successful CD133+ mobilizers expressed fewer senescence-associated genes compared with poor mobilizers.ConclusionsBilateral administration of autologous CD133+ cells in ambulatory CLI subjects was safe, and blinding was preserved. However, poor mobilization efficiency combined with high CD133+ senescence suggests futility in this approach.  相似文献   

5.
We present a patient with critical limb ischemia who was successfully treated with the injection of autologous peripheral blood (PB) CD133+ purified stem cells (SC) into the gastrocnemius muscle. No serious adverse events related to G-CSF administration, mononuclear cells harvest or CD133+ SC administration was observed. After 17 months of follow-up, our patient has experienced limb salvage, symptomatic relief and functional improvement. Moreover, we have observed the appearance of flow in the right posterior tibial artery that was absent before the procedure. To our knowledge, this is the first case of critical limb ischemia treated with PB CD133+ SC.  相似文献   

6.
During chronic limb ischemia, oxidative damage and inflammation are described. Besides oxidative damage, the decrease of tissue oxygen levels is followed by several adaptive responses. The purpose of this study was to determine whether supplementation with N-acetylcysteine (NAC) is effective in an animal model of chronic limb ischemia. Chronic limb ischemia was induced and animals were treated once a day for 30 consecutive days with NAC (30 mg/kg). After this time clinical scores were recorded and soleus muscle was isolated and lactate levels, oxidative damage and inflammatory parameters were determined. In addition, several mechanisms associated with hypoxia adaptation were measured (vascular endothelial growth factor - VEGF and hypoxia inducible factor - HIF levels, ex vivo oxygen consumption, markers of autophagy/mitophagy, and mitochondrial biogenesis). The adaptation to chronic ischemia in this model included an increase in muscle VEGF and HIF levels, and NAC was able to decrease VEGF, but not HIF levels. In addition, ex vivo oxygen consumption under hypoxia was increased in muscle from ischemic animals, and NAC was able to decrease this parameter. This effect was not mediated by a direct effect of NAC on oxygen consumption. Ischemia was followed by a significant increase in muscle myeloperoxidase activity, as well as interleukin-6 and thiobarbituric acid reactive substances species levels. Supplementation with NAC was able to attenuate inflammatory and oxidative damage parameters, and improve clinical scores. In conclusion, NAC treatment decreases oxidative damage and inflammation, and modulates oxygen consumption under hypoxic conditions in a model of chronic limb ischemia.  相似文献   

7.
A novel stem cell marker prominin-1 (CD133) has been shown to be expressed on a subpopulation of CD34(+) haematopoietic stem and progenitor cells. The aim of this study was to compare in parallel commercially available CD34(+) and CD133(+) isolation methods based on paramagnetic bead-coupled antibodies using clinical-grade samples of mobilized peripheral blood from 10 individual healthy donors under identical conditions. The CD133 negative fraction from the first selection was used for CD34(+) enrichment to obtain an additional CD34(+)/CD133(-) population. Although no significant difference in total cell expansion between cells isolated from the three procedures was observed in a 7-day cytokine-driven suspension culture, the long-term culture-initiating cell assay demonstrated that cells derived by CD34(+) isolation contain less primitive progenitors than those isolated based on CD133(+) selection. Interestingly, CD34(+)-enriched progenitors, especially the CD34(+)/CD133(-) fraction, contained a significantly higher proportion of erythroid colony-forming cells, whereas the highest content of myeloid colony-forming cells was concentrated in the CD133(+) selected cells. These subtle differences between CD34(+) and CD133(+) immunomagnetic selection will have to be explored for their potential clinical relevance.  相似文献   

8.
Yang  Cheng  Pu  Shiming  Zhu  Huan  Qin  Wanying  Zhao  Hongxia  Guo  Ziqi  Zhou  Zuping 《Molecular and cellular biochemistry》2022,477(3):897-914
Molecular and Cellular Biochemistry - Neural stem cells (NSCs) are responsible for maintaining the nervous system and repairing damages. Utility of NSCs could provide a novel solution to treat...  相似文献   

9.
Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells   总被引:19,自引:0,他引:19  
CD4+ murine T cell clones, TH1 and TH2, can be distinguished by both functional responses and by their patterns of lymphokine secretion. Recently, a mAb, 23G2, which reacts with a subset of CD45 molecules (CD45R), has been reported to bind differentially to clones of TH1 and TH2 cells. In the present study, normal splenic T cells were analyzed for differences in 23G2-reactivity and were separated into two populations based on their density of CD45R (CD45Rhi and CD45Rlo). The CD45Rhi cells secrete more IL-2 than IL-4 after stimulation in vitro; the reverse is true for the CD45Rlo cells. Because neither population secretes only IL-2 or IL-4, we were unable to classify cells as TH1 or TH2. In vivo and in vitro analyses of the CD45Rhi and CD45Rlo cells suggest a lineage relationship between the two subsets that correlates with the degree of Ag exposure and the state of maturation of the mice. In newborn mice and mice raised under sterile conditions, splenic CD4+ T cells are predominantly CD45Rhi. Under conditions of increased antigenic exposure and maturation of the mice, CD45Rlo cells develop; after long term priming in vivo, the majority of specific Ag-reactive cells are CD45Rlo. Adoptive transfer studies using BALB/c nu/nu recipients demonstrate that CD45Rhi cells become CD45Rlo cells and that the recall response (IgG) to specific Ag is mediated by CD45Rlo cells. Taken together, these data indicate that the level of expression of CD45R on CD4+ T cells distinguishes virgin (CD45Rhi) from primed/memory (CD45Rlo) T cells in normal mice.  相似文献   

10.
A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field.  相似文献   

11.
Periostin, an extracellular matrix protein, is expressed in injured tissues, such as the heart with myocardial infarction, and promotes angiogenesis and tissue repair. However, the molecular mechanism associated with periostin-stimulated angiogenesis and tissue repair is still unclear. In order to clarify the role of periostin in neovascularization, we examined the effect of periostin in angiogenic potentials of human endothelial colony forming cells (ECFCs) in vitro and in an ischemic limb animal model. Recombinant periostin protein stimulated the migration and tube formation of ECFCs. To identify the functional domains of periostin implicated in angiogenesis, five fragments of periostin, including four repeating FAS-1 domains and a carboxyl terminal domain, were expressed in Escherichia coli and purified to homogeneity. Of the five different domains, the first FAS-1 domain stimulated the migration and tube formation of human ECFCs as potent as the whole periostin. Chemotactic migration of ECFCs induced by the full length and the first FAS-1 domain of periostin was abrogated by blocking antibodies against β3 and β5 integrins. Intramuscular injection of the full length and the first FAS-1 domain of periostin into the ischemic hindlimb of mice attenuated severe limb loss and promoted blood perfusion and homing of intravenously administered ECFCs to the ischemic limb. These results suggest that the first FAS-1 domain is responsible for periostin-induced migration and angiogenesis and it can be used as a therapeutic tool for treatment of peripheral artery occlusive disease by stimulating homing of ECFCs.  相似文献   

12.
13.
14.
Abdominal aortic aneurysm (AAA) is one of a number of diseases associated with a prominent inflammatory cell infiltrate and local destruction of structural matrix macromolecules. This inflammatory infiltrate is predominately composed of T lymphocytes and macrophages. Delineating specific contribution of these inflammatory cells and their cytokines in AAA formation is the key to understanding AAA and other chronic inflammatory disease processes. Our previous studies have demonstrated that macrophages are the major source of matrix metalloproteinase-9, which is required for aneurysmal degeneration in the murine AAA model. However, the role of CD4(+) T cells, the most abundant infiltrates in aneurysmal aortic tissue, is uncertain. In the present study, we found that in the absence of CD4(+) T cells, mice are resistant to aneurysm induction. Previous studies have shown that IFN-gamma levels are increased in AAA. IFN-gamma is a main product of T cells. Intraperitoneal IFN-gamma was able to partially reconstitute aneurysms in CD4(-/-) mice. Furthermore, mice with a targeted deletion of IFN-gamma have attenuation of MMP expression and inhibition of aneurysm development. Aneurysms in IFN-gamma(-/-) mice can be reconstituted by reinfusion of competent splenocytes from the corresponding wild-type mice. This study demonstrates the pivotal role that T cells and the T cell cytokine, IFN-gamma, play in orchestrating matrix remodeling in AAA. This study has important implications for other degenerative diseases associated with matrix destruction.  相似文献   

15.
Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia.  相似文献   

16.
MicroRNAs control the genes involved in hematopoietic stem cell (HSCs) survival, proliferation and differentiation. The over-expression of miR-146 and miR-150 has been reported during differentiation of HSCs into T-lymphoid lineage. Therefore, in this study we evaluated the effect of their over-expression on CD133+ cells differentiation to T cells. miR-146a and miR-150 were separately and jointly transduced to human cord blood derived CD133+ cells (>97 % purity). We used qRT-PCR to assess the expression of CD2, CD3ε, CD4, CD8, CD25, T cell receptor alpha (TCR-α) and Ikaros genes in differentiated cells 4 and 8 days after transduction of the miRNAs. Following the over-expression of miR-146a, significant up-regulation of CD2, CD4, CD25 and Ikaros genes were observed (P < 0.01). On the other hand, over-expression of miR-150 caused an increase in the expression of Ikaros, CD4, CD25 and TCR-α. To evaluate the combinatorial effect of miR-146a and miR-150, transduction of both miRNAs was concurrently performed which led to increase in the expression of Ikaros, CD4 and CD3 genes. In conclusion, it seems that the effect of miR-150 and miR-146a on the promotion of T cell differentiation is time-dependant. Moreover, miRNAs could be used either as substitutes or complements of the conventional differentiation protocols for higher efficiency.  相似文献   

17.

Background

Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.

Methodology and Principal Findings

In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.

Conclusions

Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer.  相似文献   

18.
19.
The objective of this study was to compare the blood pool agent Gadomer with a small contrast agent for the visualization of ultra-small, collateral arteries (diameter<1 mm) with high resolution steady-state MR angiography (SS-MRA) in a rabbit hind limb ischemia model. Ten rabbits underwent unilateral femoral artery ligation. On days 14 and 21, high resolution SS-MRA (voxel size 0.49×0.49×0.50 mm3) was performed on a 3 Tesla clinical system after administration of either Gadomer (dose: 0.10 mmol/kg) or a small contrast agent (gadopentetate dimeglumine (Gd-DTPA), dose: 0.20 mmol/kg). All animals received both contrast agents on separate days. Selective intra-arterial x-ray angiograms (XRAs) were obtained in the ligated limb as a reference. The number of collaterals was counted by two independent observers. Image quality was evaluated with the contrast-to-noise ratio (CNR) in the femoral artery and collateral arteries. CNR for Gadomer was higher in both the femoral artery (Gadomer: 73±5 (mean ± SE); Gd-DTPA: 40±3; p<0.01) and collateral arteries (Gadomer: 18±4; Gd-DTPA: 9±1; p = 0.04). Neither day of acquisition nor contrast agent used influenced the number of identified collateral arteries (p = 0.30 and p = 0.14, respectively). An average of 4.5±1.0 (day 14, mean ± SD) and 5.3±1.2 (day 21) collaterals was found, which was comparable to XRA (5.6±1.7, averaged over days 14 and 21; p>0.10). Inter-observer variation was 24% and 18% for Gadomer and Gd-DTPA, respectively. In conclusion, blood pool agent Gadomer improved vessel conspicuity compared to Gd-DTPA. Steady-state MRA can be considered as an excellent non-invasive alternative to intra-arterial XRA for the visualization of ultra-small collateral arteries.  相似文献   

20.
Migration pathways of B cell and CD4+ and CD8+ T cell subsets of murine thoracic duct lymphocytes (TDL) were mapped. Per weight, the spleen accumulated more TDL than any other organ, regardless of lymphocyte subset. Spleen autoradiographs showed early accumulations of TDL in marginal zone and red pulp. Many TDL exited the red pulp within 1 hr via splenic veins. The remaining TDL entered the white pulp, not directly from the adjacent marginal zone but via distal periarterial lymphatic sheaths (dPALS). From dPALS, T cells migrated proximally along the central artery into proximal sheaths (pPALS) and exited the white pulp via deep lymphatic vessels. B cells left dPALS to enter lymphatic nodules (NOD), then also exited via deep lymphatics. T cells homed to lymph nodes more efficiently than B cells. Lymphocytes entered nodes via high-endothelial venules (HEV). CD4+ TDL reached higher absolute concentrations in diffuse cortex than did CD8+ T cells. However, CD8+ TDL moved more quickly through diffuse cortex than did CD4+ TDL. B cells migrated from HEV into NOD. Both T and B TDL exited via cortical and medullary sinuses and efferent lymphatics. A migration pathway across medullary cords is described. All TDL subsets homed equally well to Peyer's patches. T TDL migrated from HEV into paranodular zones while B cells moved from HEV into NOD. All TDL exited via lymphatics. Few TDL entered zones beneath dome epithelium. All subsets were observed within indentations in presumptive M cells of the dome epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号