首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discussion of the vertical stratification of organisms in tropical forests has traditionally focused on species distribution. Most studies have shown that, due to differences in abiotic conditions and resource distribution, species can be distributed along the vertical gradient according to their ecophysiological needs. However, the network structure between distinct vertical strata remains little-explored. To fill this gap in knowledge, we used baits to sample ants in the canopy and understorey trees of a Mexican tropical rain forest to record the ant–tree co-occurrences. We examined the ant–tree co-occurrences in the canopy and understorey using complementary network metrics (i.e., specialization, interaction diversity, modularity, and nestedness). In addition, we evaluated co-occurrence patterns between ant species on trees, using C-score analysis. In general, we found no differences in the network structure, although the interaction diversity was greater in the understorey than in the canopy networks. We also observed that co-occurrence networks of each vertical stratum featured four ant species in the central core of highly co-occurring species, with three species unique to each stratum. Moreover, we found a similar trend toward ant species segregation in the both strata. These findings reveal a similar pattern of ant–ant co-occurrences in both vertical strata, probably due to the presence of arboreal-nesting ants in the understorey. Overall, we showed that despite the marked differences in species composition and environmental conditions between understorey and canopy strata, ant–tree co-occurrences in these habitats could be governed by similar mechanisms, related to dominance and resource monopolization by ants.  相似文献   

2.
Blackberry is a considerable weed in both antropogenous habitats and semi-natural vegetation, and this results in robust colonization in open sites. Our research investigated the carbon gain and water exchange performance of this species under ecologically contrasted forest gap conditions in temperate deciduous forests. We used a Kruskal–Wallis test to assess this species ecophysiological behaviour in response to the functional relevance of light environment, seasons and forest gap character. Our research also confirmed significant relationships between abundance, gap characteristics and light response measures. Light environment plays an essential role in the development of assimilation and water use efficiency. Seasonal variation affects transpiration, and forest type influences stomatal conductance. The amount of precipitation and canopy gap size is linked to the relative abundance of the species. These characteristics integrate with a nitrogen biomass trade-off across forest types. Measures of stomatal conductance and assimilation turned out to be the most significant functional variables including a gas exchange indicator for species abundance. Extended functional leaf phenology can promote successful colonization under adequate abiotic conditions. Our results conclude that environmental-related canopy gap size can be recommended for ecologically contrasted forest types, thus modulating the biomass production of the blackberry.  相似文献   

3.
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests.  相似文献   

4.
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections.  相似文献   

5.
Pancreatic beta-cells constitute a well-communicating multicellular network that permits a coordinated and synchronized signal transmission within the islet of Langerhans that is necessary for proper insulin release. Gap junctions are the molecular keys that mediate functional cellular connections, which are responsible for electrical and metabolic coupling in the majority of cell types. Although the role of gap junctions in beta-cell electrical coupling is well documented, metabolic communication is still a matter of discussion. Here, we have addressed this issue by use of a fluorescence recovery after photobleaching (FRAP) approach. This technique has been validated as a reliable and noninvasive approach to monitor functional gap junctions in real time. We show that control pancreatic islet cells did not exchange a gap junction-permeant molecule in either clustered cells or intact islets of Langerhans under conditions that allowed cell-to-cell exchange of current-carrying ions. Conversely, we have detected that the same probe was extensively transferred between islet cells of transgenic mice expressing connexin 32 (Cx32) that have enhanced junctional coupling properties. The results indicate that the electrical coupling of native islet cells is more extensive than dye communication. Dye-coupling domains in islet cells appear more restricted than previously inferred with other methods.  相似文献   

6.
7.
Within ecological communities, species engage in myriad interaction types, yet empirical examples of hybrid species interaction networks composed of multiple types of interactions are still scarce. A key knowledge gap is understanding how the structure and stability of such hybrid networks are affected by anthropogenic disturbance. Using 15,169 interaction observations, we constructed 16 hybrid herbivore‐plant‐pollinator networks along an agricultural intensification gradient to explore changes in network structure and robustness to local extinctions. We found that agricultural intensification led to declines in modularity but increases in nestedness and connectance. Notably, network connectance, a structural feature typically thought to increase robustness, caused declines in hybrid network robustness, but the directionality of changes in robustness along the gradient depended on the order of local species extinctions. Our results not only demonstrate the impacts of anthropogenic disturbance on hybrid network structure, but they also provide unexpected insights into the structure‐stability relationship of hybrid networks.  相似文献   

8.
《Ecological Complexity》2005,2(3):287-299
Individuals in a population susceptible to a disease may be represented as vertices in a network, with the edges that connect vertices representing social and/or spatial contact between individuals. Networks, which explicitly included six different patterns of connection between vertices, were created. Both scale-free networks and random graphs showed a different response in path level to increasing levels of clustering than regular lattices. Clustering promoted short path lengths in all network types, but randomly assembled networks displayed a logarithmic relationship between degree and path length; whereas this response was linear in regular lattices. In all cases, small-world models, generated by rewiring the connections of a regular lattice, displayed properties, which spanned the gap between random and regular networks.Simulation of a disease in these networks showed a strong response to connectance pattern, even when the number of edges and vertices were approximately equal. Epidemic spread was fastest, and reached the largest size, in scale-free networks, then in random graphs. Regular lattices were the slowest to be infected, and rewired lattices were intermediate between these two extremes. Scale-free networks displayed the capacity to produce an epidemic even at a likelihood of infection, which was too low to produce an epidemic for the other network types. The interaction between the statistical properties of the network and the results of epidemic spread provides a useful tool for assessing the risk of disease spread in more realistic networks.  相似文献   

9.
Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey‐mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change.  相似文献   

10.
Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR studies recently. We analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can filter upstream network noises, and can either resonantly respond to the system stimulus at certain frequencies or respond adaptively for sustained input signals of the network fluctuations. It thus can serve as a basic functional motif with properties that are normally for larger intermolecular networks in the field of systems biology. We further analyzed examples including enzymes functioning against pH fluctuations, metabolic state change of Artemia embryos, and kinetic insulation of fluctuations in metabolic networks. The study also suggests that hysteretic enzymes may be building blocks of synthetic networks with various properties such as narrow-banded filtering. The work fills the missing gap between studies on enzyme biophysics and network level dynamics, and reveals that the coupling between the two is functionally important; it also suggests that the conformational dynamics of some enzymes may be evolutionally selected.  相似文献   

11.
Kanno  Hiroshi  Seiwa  Kenji 《Plant Ecology》2004,170(1):43-53
In the forest understorey, shrubs usually reproduce vegetatively rather than sexually, but the relative contribution of these two reproductive modes may vary with temporal changes in environmental conditions (e.g., light, substrates of forest floor) that are closely related to forest dynamics. To evaluate the occasional changes in reproductive modes of the clonal understorey shrub Hydrangea paniculata, the reproductive characteristics (i.e., flowering, seedling establishment, vegetative propagation, reproductive size and age) were investigated in four different developmental stages in a Japanese beech forest (early gap, EG; late gap, LG; building, BU; mature, MA). Flowering individuals occurred only in EG and LG, and a much greater number of seedlings was observed in both EG and LG than in BU and MA, mainly because canopy gaps provided sufficient light for flowering and suitable substrates (fallen trees and exposed mineral-soil) for seedling establishment. The flowering individuals originated from plants that had persisted in the shaded understorey until gap formation. In contrast to sexual reproduction, clonal fragmentation increased with forest development in the order LG, EG, BU, MA. This is because, in later stages of forest dynamics (BU and MA), large individuals, some of which had previously flowered in gap stages, were layered on the forest floor and subsequently produced a substantial number of clonal fragments by separation of the buried branches from the main stems which had decayed. This resulted in a large number of clonal fragments originating from a single mother plant. These results suggest that the reproductive modes of H. paniculata is strongly influenced by the changes in environmental conditions with respect to the dynamics of canopy trees. Reproduction from seed in gap stages, despite their short period, provide new genets in established populations, whereas vegetative propagation via fragmentation in closed-canopy stages enhance the stability of the population until the next disturbance.  相似文献   

12.
Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.  相似文献   

13.
Local abundance and population fluctuations are key factors affecting the realized interaction frequencies in biotic interactions, but they are commonly ignored when network metrics are calculated over aggregated sets of observations. Here we studied how abundance fluctuations (i.e. demographic and stochastic population dynamics in one of the trophic levels) may affect derived network‐level inferences in bipartite ecological networks. Variation at both the species and network level in network indices (d’, Dependence, Fisher's alpha diversity for both levels, H2, weighted NODF) were strongly correlated with the extent of abundance fluctuations, with a strong effect of environmental stochasticity on all indices except NODF; this was the only index for which considerable variation was caused by varying carrying capacities among species. Binary connectance, in turn, does not take interaction frequency (and thus abundance) into account and was only influenced by abundance fluctuations at low population sizes if this led to non‐occurrence of ‘true’ interactions. Overall, abundance and population dynamics are likely to play an important role in determining what is commonly observed and summarized into ecological networks. We suggest that ecological network inference should account for underlying population dynamics and uncertainty in what is observed as interaction frequencies, modelling mechanisms at operative organisational levels below the network rather than using aggregated data of observations. Modelling population dynamics may be a valuable tool in this field to conceptualize and tease apart different sources of variation and express uncertainty in our inference from small samples.  相似文献   

14.
Network epidemiology has mainly focused on large-scale complex networks. It is unclear whether findings of these investigations also apply to networks of small size. This knowledge gap is of relevance for many biological applications, including meta-communities, plant–pollinator interactions and the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological networks are inherently asymmetrical and thus cannot be realistically modelled with undirected networks. We modelled disease spread and establishment in directed networks of 100 and 500 nodes at four levels of connectance in six network structures (local, small-world, random, one-way, uncorrelated, and two-way scale-free networks). The model was based on the probability of infection persistence in a node and of infection transmission between connected nodes. Regardless of the size of the network, the epidemic threshold did not depend on the starting node of infection but was negatively related to the correlation coefficient between in- and out-degree for all structures, unless networks were sparsely connected. In this case clustering played a significant role. For small-size scale-free directed networks to have a lower epidemic threshold than other network structures, there needs to be a positive correlation between number of links to and from nodes. When this correlation is negative (one-way scale-free networks), the epidemic threshold for small-size networks can be higher than in non-scale-free networks. Clustering does not necessarily have an influence on the epidemic threshold if connectance is kept constant. Analyses of the influence of the clustering on the epidemic threshold in directed networks can also be spurious if they do not consider simultaneously the effect of the correlation coefficient between in- and out-degree.  相似文献   

15.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

16.
Understanding the factors determining the spatial and temporal variation of ecological networks is fundamental to the knowledge of their dynamics and functioning. In this study, we evaluate the effect of elevation and time on the structure of plant-flower-visitor networks in a Colombian mountain forest. We examine the level of generalization of plant and animal species and the identity of interactions in 44 bipartite matrices obtained from eight altitudinal levels, from 2200 to 2900 m during eight consecutive months. The contribution of altitude and time to the overall variation in the number of plant (P) and pollinator (A) species, network size (M), number of interactions (I), connectance (C), and nestedness was evaluated. In general, networks were small, showed high connectance values and non-nested patterns of organization. Variation in P, M, I and C was better accounted by time than elevation, seemingly related to temporal variation in precipitation. Most plant and insect species were specialists and the identity of links showed a high turnover over months and at every 100 m elevation. The partition of the whole system into smaller network units allowed us to detect small-scale patterns of interaction that contrasted with patterns commonly described in cumulative networks. The specialized but erratic pattern of network organization observed in this tropical mountain suggests that high connectance coupled with opportunistic attachment may confer robustness to plant-flower-visitor networks occurring at small spatial and temporal units.  相似文献   

17.
Species interact in nature to form complex ecological networks. There has been a rising interest in recent years to characterize the topology of such networks along various gradients (e.g. successional, climatic, elevational) to better understand how they assemble in space and time. However, to compare structure of networks that vary in size, shape and connectance, topological metrics need to be standardized (as most metrics covary with such network attributes). Traditionally, this has been done by transforming network metrics into z-scores prior comparisons. Here, I show that such standardized metrics are not independent of basic network properties such as connectance. Instead, I found that there was a consistent tendency for z-scores to approach 0 when connectance progressively decreased and approached its minimal value. This is probably due to the reduced null space available for null models to randomize interactions at such low connectance. I discuss ways to circumvent the problem in future studies.  相似文献   

18.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

19.
20.
刘长柱  郭强  池秀莲 《植物学报》2015,50(2):234-240
叶片是植物的主要光合器官, 其质量与数量的权衡关系体现植物对环境的适应策略。在全球气候变化的背景下, 研究叶片质量与数量关系有助于理解植物对环境变化的响应趋势。该研究应用标准化主轴回归方法, 探讨了我国温带山地森林中48个常见树种的单叶干重与出叶强度的权衡关系。结果表明, 所有物种以及落叶阔叶林、常绿和落叶阔叶树种、单叶以及亚冠层阔叶树种的单叶干重与出叶强度表现为异速生长关系; 针叶林、针阔混交林、常绿及落叶针叶树种、复叶以及冠层阔叶树种则表现为等速生长关系。研究结果表明, 叶大小和出叶强度并无恒定的权衡关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号