首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matías L  Zamora R  Castro J 《Oecologia》2012,169(3):833-844
The understanding of the impact of extreme climatic events under a global climate change scenario is crucial for the accurate forecast of future plant community dynamics. We have experimentally assessed the effect of drier and wetter summer conditions on the recruitment probabilities and the growth of seedlings from eight woody species representative of the most important functional groups in the community, pioneer shrubs, mid-successional shrubs and trees, across the main habitats in the study area (open habitat, shrubland, and forest). Our hypothesis proposes that wet summer conditions would represent a good opportunity for tree species regeneration, enhancing both forest maintenance and expansion. A drier summer scenario, on the other hand, would limit forest regeneration, and probably hinder the colonization of nearby habitats. We found a habitat effect on the emergence, survival, and final biomass, whereas different climate scenarios affected seedling survival and biomass. A wet summer boosted growth and survival, whereas greater drought reduced survival only in some cases. These results were modulated by the habitat type. Overall, shrub species presented higher survival and growth and were less affected by more severe drought, whereas some tree species proved to be extremely dependent on wet summer conditions. We conclude that the reduction in frequency of wet summers predicted for the coming decades in Mediterranean areas will have greater consequences for species recruitment than will increased drought. The different response of the species from the various functional groups has the potential to alter the composition and dominance of future plant communities.  相似文献   

2.
Extreme climate events, such as severe drought episodes, may induce changes in vegetation if they induce species‐specific adult mortality and changes in the seedling recruitment pattern. In 2005 a severe drought occurred in Doñana National Park (south Spain) causing extensive shrubland mortality. Over the following years we monitored the soil seed bank and seedling emergence via a gradient of canopy dieback induced by the drought episode. The canopy dieback corresponded to an increase in emergence of seedlings of woody species in 2007, probably because of the reduced competition induced by canopy loss. The soil seed bank of woody species sampled in 2008 was less abundant on plots with a higher proportion of dead vegetation, probably because of depletion of the seed bank as a result of the increased germination in the previous year and also as a result of a reduction in seed supply in these sites. Accordingly, in 2009 we detected reduced emergence of woody species on plots that had suffered the greatest shrub mortality. We failed to find any significant changes in patterns of the soil seed bank and seedling emergence of short‐lived herbaceous species, indicating greater resilience in these types of species. This study highlights the resilience of Mediterranean shrublands to climate fluctuations at one extreme of the variability characteristic of these ecosystems. An increase in the frequency of severe drought episodes – increasingly probable under the new climate conditions – does have the potential, however, to induce changes in vegetation, especially in woody communities that need more time to replenish their seed banks.  相似文献   

3.
In a four-year removal experiment we investigated the effect of removing a dominant species (Nardus stricta), the litter layer and moss layer on species composition of established vegetation and on numbers and species composition of seedlings. The experiment was conducted in an oligotrophic wet meadow (Molinion with some features ofViolion caninae according to phytosociological classification). After four years of the experiment, the redundancy analysis (RDA) did not reveal any changes in the composition of the established plant community. Seedling numbers and their species composition, however, varied significantly both among treatments and over years. Whereas the differences between treatments were mainly in total seedling numbers, the years differed in both seedling numbers and relative representation of individual species. In particular,Myosotis nemorosa seedlings highly increased their abundance in a favourable year 1995 constituting one third of all the seedlings found, whereas in other years their abundance was between 4% and 10%. The effects of year and treatment were not additive (significant year × treatment interaction). This means that plots under different treatments are differently affected by climatic conditions of individual years. The greatest increase of seedling recruitment was observed in the plots with the moss layer removed. Microsites with high seedling recruitment persisted in the plots for no more than two years. Why the established vegetation composition does not differ among treatments even after four years, despite the relatively pronounced and immediate response of seedlings? The number of species with regular seedling recruitment is limited. They are mostly perennials, and consequently, it might take even longer than four years before recruitment limitation affects the population size of established plants.  相似文献   

4.
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra‐annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.  相似文献   

5.
Abstract. Both spatial and temporal variability in recruitment probabilities can lead to coexistence in gap-phase regenerating forests which would otherwise tend to be dominated by fewer species. Using modified Markov models, the potential roles were examined of temporal variability and differential mortality rates among species in the dynamics of a forest for which spatial variability has been rejected as a strong factor leading to coexistence. Differential longevity modifies results obtained from a simple Markov model: it exerts a strong influence on the equilibrium species composition, on the rate of community change and on the time a community requires to reach equilibrium. Simulations with varying transition probabilities mimicked a changing climate, producing four main results: 1. Unless the duration of climate states is very long or very short, forest composition is in a continual state of disequilibrium. 2. Species vary in their response times to changing climate. 3. The mean abundance of each species under a varying climate scenario is different from that expected from the mean climate state. 4. The rare, long-lived species was favored by climatic fluctuations at the expense of more common shorter lived species. Differential mortality rates provide an equilibrium-based mechanism for coexistence, and temporally fluctuating recruitment probabilities a non-equilibrium mechanism. Composition could be maintained by differential longevity among species and climatic fluctuations allowing periodic recruitment of the less common species.  相似文献   

6.
As El Niño is predicted to become stronger and more frequent in the future, it is crucial to understand how El Niño-induced droughts will affect tropical forests. Although many studies have focused on tropical rainforests, there is a paucity of studies on seasonally dry tropical forests (SDTFs), particularly in Asia, and few studies have focused on seedling dynamics, which are expected to be strongly affected by drought. Seedlings in SDTFs are generally more drought-tolerant than those in the rainforests, and the effects of El Niño-induced droughts may differ between SDTF and tropical rainforests. In this study, we explored the impact of El Niño-induced drought at an SDTF in northern Thailand by monitoring the seedling dynamics at monthly intervals for 7 years, including a period of strong El Niño. The effects were compared between two forest types in an SDTF: a deciduous dipterocarp forest (DDF), dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. El Niño-induced drought increased seedling mortality in both the forest types. The effect of drought was stronger in evergreen than in the deciduous species, resulting in higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which compensated for the mortality of seedlings in the DDF. As a result, El Niño increased seedling density in the DDF and decreased it in the LMF. This is the first long-term study to identify the differences in the impacts of El Niño on seedlings between the two forest types, and two leaf habits, evergreen and deciduous, in Southeast Asia. Our findings suggest that future climate change may alter the species composition and spatial distribution of seedlings in Asian SDTFs.  相似文献   

7.
Negative density dependence contributes to seedling dynamics in forested ecosystems, but the relative importance of this factor for different woody plant life‐forms is not well‐understood. We used 1 yr of seedling survivorship data for woody seedlings in 17 different plots of lower to mid‐montane rain forests on the island of Dominica to examine how seedling height, abiotic factors, and biotic factors such as negative density dependence are related to seedling survival of five different life‐forms (canopy, midstory, and understory trees; shrubs; and lianas). Across 64 species, taller seedlings in seedling plots with higher canopy openness, greater seedling density, lower relative abundance of conspecific seedlings, and lower relative abundance of conspecific adults generally had a greater probability of surviving. Height was the strongest predictor of seedling survival for all life‐forms except lianas. Greater seedling density was positively related to survival for canopy and midstory trees but negatively related to survival for the other life‐forms. For trees, the relative abundance of conspecific seedling and adult neighbors had weak and strong negative effects on survival respectively. Neither shrub nor liana seedling survival was affected by the relative abundance of conspecific neighbors. Thus, negative density dependence is confirmed as an important structuring mechanism for tree seedling communities but does not seem to be important for lianas and shrubs in Dominican rain forests. These results represent the first direct assessment of controls on seedling survival of all woody life‐forms – an important step in understanding the dynamics and structure of the entire woody plant community.  相似文献   

8.
Tree species are predicted to track future climate by shifting their geographic distributions, but climate‐mediated migrations are not apparent in a recent continental‐scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance‐climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large‐scale tree migration. Taken together, this juvenile–adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.  相似文献   

9.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

10.
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。  相似文献   

11.
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species‐specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species‐specific, spatially explicit forest landscape model (LANDIS‐II) to evaluate forest response to climate–wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium–high emission scenario (A2) in combination with corresponding climate‐specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought‐tolerant species over less drought‐tolerant species relative to baseline, and this change was greatest at mid‐elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape‐level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome‐based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century.  相似文献   

12.
Green PT  O'Dowd DJ  Lake PS 《Oecologia》2008,156(2):373-385
The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that this consumer plays a key role in regulating seedling recruitment and in controlling litter dynamics on the island, independent of the type of vegetation in which it occurred. To test this hypothesis, we conducted crab exclusion experiments in two forest types on the island and followed the dynamics of seedling recruitment and litter processing for six years. To determine if these effects were likely to be general across the island, we compared land crab densities and seedling abundance and diversity at ten sites across island rainforest. Surveys across island rainforest showed that seedlings of species susceptible to predation by land crabs are consistently rare. Abundance and diversity of these species were negatively correlated to red crab abundance. Although red land crabs may be important determinants of seedling recruitment to the overstorey, differences in overstorey and seedling composition at the sites suggests that recruitment of vulnerable trees still occurs at a temporal scale exceeding that of this study. These “windows” of recruitment may be related to infrequent events that reduce the effects of land crabs. Our results suggest that unlike the context dependence of most keystone consumers in continental systems, a single consumer, the red land crab, consistently controls the dynamics of seedling recruitment across this island rainforest.  相似文献   

13.
In 1998–2001, I studied disturbance effects on the population structure and dynamics of a grassland strict biennial Pedicularis sylvatica, and on the species demography (monthly dynamics of seedling recruitment in 1998 and within- and between-year survival in 1998–2000). In two Czech populations, I established three experimental disturbance regimes: (1) a gap treatment, that simulated grazing by clipping vegetation and creating small gaps, (2) a mowing treatment, where I clipped the vegetation, and (3) a no management treatment, where I left the vegetation untreated. The number of recruiting seedlings varied greatly by year, and demographic structure of populations showed significant year-to-year oscillations in mean seedling numbers, from low (3 ± 0.7 s.e. per 0.25 m2 plot) to high (103 ± 20). Inversely in the same years and plots, mean adult numbers in populations oscillated from high (12 ± 2) to low (0.7 ± 0.3). Disturbance effects were only important for seedling recruitment in early census dates in all years. In 1998, most seedlings recruited in April–May in gaps in both sites, but most died before winter. Within- and between-year survival was not affected by disturbance regimes but fluctuated significantly among years. Between-year survival increased with increasing size of the overwintering bud and was higher in disturbance treatments. Since the oscillations in population structure did not significantly vary in response to experimental disturbances, population dynamics may be driven endogenously rather than by disturbance events. The weak disturbance effects on species demography may also indicate population resilience to changes in habitat quality. However, since disturbances promoted seedling recruitment, grazing or mowing regimes are strongly recommended, as they create regeneration opportunities and maintain habitat quality, meeting the species long-term conservation goals.  相似文献   

14.
吉林蛟河针阔混交林乔木幼苗组成与月际动态   总被引:1,自引:0,他引:1       下载免费PDF全文
以吉林省蛟河42 hm2针阔混交林动态监测样地为平台, 在样地内选取224个1 m × 1 m幼苗监测小样方, 基于2013年6至8月每月中旬的幼苗监测数据, 对乔木幼苗物种组成、数量特征、月际动态及幼苗与同种大树之间的关系进行分析。结果表明: (1)该群落共调查到乔木树种幼苗16种。物种组成在6月和7月间变化不大, 但与8月差异较大。物种组成在各样方间表现出极大的差异性, 不同种幼苗出现的样方数为1-159。(2) 6月至8月, 幼苗个体从1722株减少到1214株, 降幅达29.5%。不同种幼苗在个体数量上变异较大, 个体数超过100的幼苗有色木槭(Acer mono)、水曲柳(Fraxinus mandschurica)、紫椴(Tilia amurensis)和东北槭(Acer mandshuricum), 四者个体数之和占所有物种个体总数的84.26%; 不同种幼苗密度变异性较大, 只有色木槭、水曲柳、紫椴和东北槭密度大于1株·m-2, 其他种幼苗密度均较低。(3)新生幼苗更新、死亡格局表现出明显的种间差异与月际间差异, 7月新生幼苗总体死亡率(48.9%)显著高于8月(28.3%); 整个调查季(6-8月), 新生幼苗总体死亡率(40.56%)明显高于多年生幼苗(7.34%)。就幼苗更新情况而言, 该研究群落一年中更新主要集中在6月。(4)色木槭、紫椴、杉松(Abies holophylla)幼苗的密度与同种成年个体的胸高断面积之和之间存在显著的正相关关系(p = 0.006、0.013、0.037), 表明三者幼苗密度随周围母树多度的增加而增加, 其他物种幼苗密度与同种个体数目或同种胸高断面积之和未表现出显著的相关关系。  相似文献   

15.
《植物生态学报》2016,40(2):127
AimsOur objective was to explore the composition and temporal dynamics of woody plant seedlings and the ecological processes that affect the amount of seedlings in Jiaohe, Jilin Province, China. Methods We established a total of 415 seed-seedling census stations in three large permanent field plots belonging to three successional stages in the conifer and broad-leaved mixed forests. Based on three seedling censuses from 2012 to 2014, we analyzed species composition, quantitative character, height-classes structure and their inter-annual dynamics. Multiple linear regression was used to test the relationship between the abundance of seedlings for five major species and the forest types, the sum of the basal area of conspecific adult within 20 m away from a seed trap, as well as canopy openness.Important findings Our results show that: (1) The species composition of seedlings slightly varied among different successional stages, and was similar with that of trees in the plots. The rank of important values for seedling species among different years and successional stages varied slightly. (2) The number of seedlings and seedling species distributed mainly between 5-20 cm height classes, and decreased with the increasing height class. The number of seedlings decreased faster than that of seedling species, indicating that compared with interspecific competition, intraspecific competition was the main driver that led to seedling death. It confirmed the role of the negative density dependence in affecting seedling regeneration. (3) The amount of seedlings for all of the five major species was significantly positively related to the sum of the basal area of conspecific adults, which indicated that the quantity and distribution of seedlings were affected by dispersal limitation as well as niche processes. Our research confirmed the role of negative density dependence, dispersal limitation and niche processes on seedling composition.  相似文献   

16.
Greiling  Dunrie A.  Kichanan  Nopporn 《Plant Ecology》2002,161(2):175-183
The controls of seedling emergence and survival determine the potential distribution of adult plants and, thereby, plant community structure. Seed availability, competition from established neighbors, and seedling predation may all limit seedling recruitment. In this field experiment, we followed the emergence and survival of seedlings of three perennial forbs, Achillea millefolium, Hypericum perforatum, and Monarda fistulosa, in old-fields in southeastern Michigan, USA. As adults, all three have aromatic foliage that may deter herbivory, but seedlings may be more susceptible than adults. To establish the relative importance of potential controls on seedling numbers, we manipulated seed availability through seed additions, the influence of competitors by neighbor-removals, and the influence of insect herbivores with insecticide in a fully factorial field experiment. Seed addition and insecticide never affected seedling emergence for any species. Competition from established neighbors controlled seedling emergence for all three species and decreased Achillea survival. Insecticide significantly increased Monarda seedling survival in competition plots, significantly increased Hypericum survival in open plots, and had no effect on Achillea. Notably, insecticide increased survival of the native Monarda fistulosa more than the two introduced species. While neighbors strongly reduced emergence and survival of all three species, herbivores acted on a species-specific basis. These results suggest the differential effects of insects may contribute more to the seedling species composition and abundance patterns than the less-selective influence of competition.  相似文献   

17.
为了解蛟河地区木本植物幼苗的数量特征及其年际动态, 以及影响幼苗数量的生态学过程, 该文以不同演替阶段针阔混交林监测样地为基础, 在样地内共设置了451个种子雨-幼苗观测样站.通过2012-2014年连续3年的幼苗监测调查, 对木本植物幼苗物种组成,数量特征,高度级结构及其年际动态进行了分析, 并用多元回归的方法分析了幼苗数量与林分类型,同种成体胸高断面积之和及林冠开阔度的关系.结果表明: (1)林下幼苗层主要木本植物的组成在不同演替阶段林分中差异不大, 并与样地内主要树种组成保持着一定相似性, 但幼苗重要值排序在年际间和不同演替阶段稍有波动.(2) 3个样地内幼苗个体数量和物种数都主要集中在5-20 cm高度级之间, 之后随高度级增加而逐渐减少, 但幼苗个体数量减少更快.表明与种间竞争相比, 物种内部的相互作用是导致幼苗死亡的主要原因, 证实了负密度制约效应在幼苗更新过程中的作用.(3) 5个主要树种的幼苗数量都与同种成体胸高断面积之和呈显著的正相关关系, 还呈现出明显的生境偏好, 表明扩散限制和生态位过程也会影响幼苗的数量和分布.该文间接证实了负密度制约效应,扩散限制和生态位过程对温带地区不同演替阶段森林群落中幼苗数量组成的影响.  相似文献   

18.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

19.
Abstract. Question: Does the influence of plant canopy on seedling establishment interact with climate conditions, and particularly, do intensified drought conditions, enhance a positive effect of the vegetation canopy on seedlings in Mediterranean‐type ecosystems. Location: Mediterranean shrubland near Barcelona, Spain at 210 m a.s.l. Methods: Over the course of four years we recorded seedling emergence and survival in open areas and below vegetation under control, drier and warmer experimental climatic conditions. Results: Seedling emergence is more sensitive to climate conditions than later stages of growth. When considering the whole set of species, the total number of established seedlings at the end of the experiment was lower in the drought and warming stands than in control ones, and vegetation canopy increased the number of these seedlings in the drought stands. Drought reduced seedling emergence but not warming, while the interaction between climate treatments and vegetation canopy was not significant. Seedling survival was lower in the warming treatment than in the control. Under drought conditions, vegetation canopy increased seedling emergence of the dominant Globularia alypum. In control stands, vegetation canopy reduced their survival. Vegetation canopy increased the survival of the dominant Erica multiflora in warming stands, and it reduced the survival of G alypum in drought stands. No significant effects of drought and warming were observed in the seed rain of these two species. Conclusions: The balance of the facilitation‐competition interactions between vegetation canopy and seedling establishment in Mediterranean‐type ecosystems determined by water availability, and drought conditions enhance the positive effect of vegetation canopy. This interaction is species‐specific and shows important between‐year variability.  相似文献   

20.
Background and Aims Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants.Methods Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory.Key Results At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13–35 % higher) in all species except two. Survival and establishment was possible for 60–75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success.Conclusions The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号