首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studying the distributions of plants and animals along environmental gradients can illuminate the factors governing and maintaining species diversity. There are two general predictions of how species richness and elevation are related: either species richness decreases monotonically with increasing elevation or richness peaks at mid-elevations. Several processes might contribute to this pattern. In this paper, I examine patterns in ant species richness along elevational gradients in three states in the western US: Colorado, Nevada, and Utah. I test for the effects of available area and the geometric constraints model on species richness patterns. I also test Rapoport's rescue hypothesis, which relates the extent of species' elevational ranges to patterns in species richness. In each state, species richness peaked at mid-elevations. Area explained more variation in species richness than the geometric constraints model in Colorado and Utah, but not in Nevada. Area and geometric constraints together explained 90%, 99%, and 57% of the variation in species richness in Colorado, Nevada, and Utah, respectively. Even though there were peaks at mid-elevations, I still found a strong Rapoport effect. This work suggests that the influences of area and geometric constraints cannot be overlooked when examining patterns in species richness along environmental gradients.  相似文献   

2.
物种多样性格局同时受到多个因子和过程的综合作用。以往对水生植物多样性格局形成机制的研究主要集中在几何限制、水分能量状况或随机过程等少数因子方面。该研究通过野外调查, 研究柴达木盆地水生植物沿经度和纬度梯度的分布格局, 并验证了对物种多样性分布格局影响较大的水分-能量假说、栖息地异质性假说、空间自相关、物种-面积效应和中域效应这5种假说。主要结果表明柴达木盆地水生植物多样性沿经度和纬度梯度均呈现“∩”形单峰格局。回归分析显示中域效应和物种-面积效应显著影响柴达木盆地水生植物多样性格局, 而水分-能量、栖息地异质性假说及空间自相关对该区域水生植物多样性格局影响较小。方差分解显示中域效应对柴达木盆地水生植物多样性经度和纬度格局的单独解释率分别为68.41%和66.91%, 该结果表明柴达木盆地水生植物多样性格局主要受几何限制和扩散限制影响。结合以往研究结果, 该研究进一步证实几何限制和随机效应可能是影响中国干旱区水生植物多样性分布格局的重要自然因素。  相似文献   

3.
Species diversity gradients seen today are, to a large degree, a product of history. Spatially nonrandom originations, extinctions, and changes in geographic distributions can create gradients in species and higher-taxon richness, but the relative roles of each of these processes remain poorly documented. Existing explanations of diversity gradients have tended to focus on either macroevolutionary or biogeographic processes; integrative models that include both are largely lacking. We used simple models that incorporate origination and extinction rates along with dispersal of taxa between regions to show that dispersal not only affects regional richness patterns but also has a strong influence on the average age of taxa present in a region. Failure to take into account the effects of dispersal can, in principle, lead to biased estimates of diversification rates and potentially wrong conclusions regarding processes driving latitudinal and other gradients in diversity. Thus, it is critical to include the effects of dispersal when formulating and testing hypotheses about the causes of large-scale gradients in diversity. Finally, the model results, in conjunction with the results of existing empirical studies, suggest that the nature of macroevolutionary and biogeographic processes may differ between terrestrial and marine diversity gradients.  相似文献   

4.
Evolutionary processes such as adaptation, ecological filtering, and niche conservatism involve the interaction of organisms with their environment and are thus commonly studied along environmental gradients. Elevational gradients have become among the most studied environmental gradients to understand large-scale patterns of species richness and composition because they are highly replicated with different combinations of geographical, environmental and historical factors. We here review the literature on using elevational gradients to understand evolutionary processes in ferns. Some phylogenetic studies of individual fern clades have considered elevation in the analysis or interpretation and postulated that fern diversification is linked to the colonization of mountain habitats. Other studies that have linked elevational community composition and hence ecological filtering with phylogenetic community composition and morphological traits, usually only found limited phylogenetic signal. However, these studies are ultimately only correlational, and there are few actual tests of the evolutionary mechanisms leading to these patterns. We identify a number of challenges for improving our understanding of how evolutionary and ecological processes are linked to elevational richness patterns in ferns: i) limited information on traits and their ecological relevance, ii) uncertainties on the dispersal kernels of ferns and hence the delimitation of regional species pools from which local assemblages are recruited, iii) limited genomic data to identify candidate genes under selection and hence actually document adaptation and selection, and iv) conceptual challenges in developing clear and testable hypotheses to how specific evolutionary processes can be linked to patterns in community composition and species richness.  相似文献   

5.
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter‐specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.  相似文献   

6.
Species distribution depends on the physiological and ecological niche where a species can exist and regenerate in resource competition with other species (niche limitation). The realized niche is influenced by local biotic processes that influence species behaviour and the shape of the response curves relative to environmental gradients. Processes on larger scales also influence the species niche through source-sink mechanisms (dispersal limitation) and the species richness of an area (pool limitation). Despite the growing evidence of skewed or irregular species response curves along gradients, many ecologists still assume symmetric, unimodal response curves along gradients in ecological interpretation. Ellenberg’s indicator system is probably the most common example. However, the assumption is not ecologically or statistically valid, due to the many different processes affecting the distribution of plant species. Here I present the results of Huisman-Olff-Fresco (HOF) regressions for 209 Danish forest species. HOF modelling is chosen to avoid the classical drawbacks of assuming symmetric, unimodal response patterns. I calculate the optima for all species with unimodal responses to soil pH and compare these with the Ellenberg indicator values for reaction (R), which are often used as a substitute for soil pH measurements. I demonstrate that the assumption of symmetric, unimodal species behaviour is violated in 54% of the cases and that pH optima and R indicator values for species are not always compatible. Ellenberg reaction scale has been used byEwald (Folia Geobot. 38: 357–366, 2003) as an indicator of which species are calcicole, i.e., whether they can grow and reproduce on calcareous soils. Such affinities of species, however, are related to both local niche properties and processes on large scales and cannot be generalized from a single empirical variable such as pH, nor from Ellenberg semi-ordinal indicator scale. I conclude that while the determination of whether species are calcicole or calcifuge requires more research, it is evident that Denmark contains a fairly balanced number of calciphytic and acidophytic species. This is probably due to the nearly equal areas with acidic and alkaline soils in Denmark, which also contribute to the high species richness of more than 500 vascular plant species in Danish forests.  相似文献   

7.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

8.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

9.
Urban areas are among the land use types with the highes richness in plant species. A main feature of urban floras is the high proportion of non-native species with often divergent distribution patterns along urban–rural gradients. Urban impacts on plant species richness are usually associated with increasing human activity along rural-to-urban gradients. As an important stimulus of urban plant diversity, human-mediated seed dispersal may drive the process of increasing the similarity between urban and rural floras by moving species across urban–rural gradients. We used long motorway tunnels as sampling sites for propagules that are released by vehicles to test for the impact of traffic on seed dispersal along an urban–rural gradient. Opposite lanes of the tunnels are separated by solid walls, allowing us to differentiate seed deposition associated with traffic into vs. out of the city. Both the magnitude of seed deposition and the species richness in seed samples from two motorway tunnels were higher in lanes leading out of the city, indicating an 'export' of urban biodiversity by traffic. As proportions of seeds of non-native species were also higher in the outbound lanes, traffic may foster invasion processes starting from cities to the surrounding landscapes. Indicator species analysis revealed that only a few species were confined to samples from lanes leading into the city, while mostly species of urban habitats were significantly associated with samples from the outbound lanes. The findings demonstrate that dispersal by traffic reflects different seed sources that are associated with different traffic directions, and traffic may thus exchange propagules along the urban–rural gradient.  相似文献   

10.
One of the more vexing issues in ecology is how historical processes affect contemporary patterns of biodiversity. Accordingly, few models have been presented. Two corollary models (centre of origin, time-for-speciation) can be used to make quantitative predictions characterizing the tropical niche conservatism hypothesis and describe diversification as diffusion and subsequent cladogenesis of species away from the place of origin of a higher taxon in the tropics. Predictions derived from such models are: (i) species richness declines toward the periphery of the range of a higher taxon; (ii) taxa are more derived toward the periphery than the centre; (iii) ages of taxa are lower toward the periphery than the centre; and (iv) ages and measures of derivedness are less variable toward the periphery of the range of a higher taxon. I tested these predictions to better understand the formation of one of the most ubiquitous patterns of biodiversity-the latitudinal gradient in species richness. Results indicate well-supported predictions for New World leaf-nosed bats and that diversification has had strong influences on latitudinal gradients of species richness. A better understanding of how evolutionary diversification of taxa contributes to formation of patterns of species richness along environmental gradients is necessary to fully understand spatial variation in biodiversity.  相似文献   

11.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

12.
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment-richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places.  相似文献   

13.
Rebecca J. Rowe 《Ecography》2009,32(3):411-422
The mechanisms shaping patterns of biodiversity along spatial gradients remain poorly known and controversial. Hypotheses have emphasized the importance of both environmental and spatial factors. Much of the uncertainty about the relative role of these processes can be attributed to the limited number of comparative studies that evaluate multiple potential mechanisms. This study examines the relative importance of six variables: temperature, precipitation, productivity, habitat heterogeneity, area, and the mid-domain effect on patterns of species richness for non-volant small mammals along four neighboring mountain ranges in central Utah. Along each of these elevational gradients, a hump-shaped relationship of richness with elevation is evident. This study evaluates whether the processes shaping this common pattern are also common to all gradients. Model selection indicates that no one factor or set of factors best explains patterns of species richness across all gradients, and drivers of diversity may vary seasonally. These findings suggest that commonality in the pattern of species richness, even among elevational gradients with a similar biogeographic history and fauna, cannot be attributed to a simple universal explanation.  相似文献   

14.
Aim The value of biodiversity informatics rests upon the capacity to assess data quality. Yet as these methods have developed, investigating the quality of the underlying specimen data has largely been neglected. Using an exceptionally large, densely sampled specimen data set for non‐flying small mammals of Utah, I evaluate measures of uncertainty associated with georeferenced localities and illustrate the implications of uncritical incorporation of data in the analysis of patterns of species richness and species range overlap along elevational gradients. Location Utah, USA, with emphasis on the Uinta Mountains. Methods Employing georeferenced specimen data from the Mammal Networked Information System (MaNIS), I converted estimates of areal uncertainty into elevational uncertainty using a geographic information system (GIS). Examining patterns in both areal and elevational uncertainty measures, I develop criteria for including localities in analyses along elevational gradients. Using the Uinta Mountains as a test case, I then examine patterns in species richness and species range overlap along an elevational gradient, with and without accounting for data quality. Results Using a GIS, I provide a framework for post‐hoc 3‐dimensional georeferencing and demonstrate collector‐recorded elevations as a valuable technique for detecting potential errors in georeferencing. The criteria established for evaluating data quality when analysing patterns of species richness and species range overlap in the Uinta Mountains test case reduced the number of localities by 44% and the number of associated specimens by 22%. Decreasing the sample size in this manner resulted in the subsequent removal of one species from the analysis. With and without accounting for data quality, the pattern of species richness along the elevational gradient was hump‐shaped with a peak in richness at about mid‐elevation, between 2300 and 2600 m. In contrast, the frequencies of different pair‐wise patterns of elevational range overlap among species differed significantly when data quality was and was not accounted for. Main conclusions These results indicate that failing to assess spatial error in data quality did not alter the shape of the observed pattern in species richness along the elevational gradient nor the pattern of species’ first and last elevational occurrences. However, it did yield misleading estimates of species richness and community composition within a given elevational interval, as well as patterns of elevational range overlap among species. Patterns of range overlap among species are often used to infer processes underlying species distributions, suggesting that failure to account for data quality may alter interpretations of process as well as perceived patterns of distribution. These results illustrate that evaluating the quality of the underlying specimen data is a necessary component of analyses incorporating biodiversity informatics.  相似文献   

15.
Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change.  相似文献   

16.
Aim  A latitudinal gradient in species richness, defined as a decrease in biodiversity away from the equator, is one of the oldest known patterns in ecology and evolutionary biology. However, there are also many known cases of increasing poleward diversity, forming inverse latitudinal biodiversity gradients. As only three processes (speciation, extinction and dispersal) can directly affect species richness in areas, similar factors may be responsible for both classical (high tropical diversity) and inverse (high temperate diversity) gradients. Thus, a modified explanation for differential species richness which accounts for both patterns would be preferable to one which only explains high tropical biodiversity.
Location  The New World.
Methods  We test several proposed ecological, temporal, evolutionary and spatial explanations for latitudinal diversity gradients in the New World snake tribe Lampropeltini, which exhibits its highest biodiversity in temperate regions.
Results  We find that an extratropical peak in species richness is not explained by latitudinal variation in diversification rate, the mid-domain effect, or Rapoport's rule. Rather, earlier colonization and longer duration in the temperate zones allowing more time for speciation to increase biodiversity, phylogenetic niche conservatism limiting tropical dispersal and the expansion of the temperate zones in the Tertiary better explain inverse diversity gradients in this group.
Main conclusions  Our conclusions are the inverse of the predictions made by the tropical conservatism hypothesis to explain higher biodiversity near the equator. Therefore, we suggest that the processes invoked are not intrinsic to the tropics but are dependent on historical biogeography to determine the distribution of species richness, which we refer to as the 'biogeographical conservatism hypothesis'.  相似文献   

17.
Aim Adaptive trait continua are axes of covariation observed in multivariate trait data for a given taxonomic group. These continua quantify and summarize life‐history variation at the inter‐specific level in multi‐specific assemblages. Here we examine whether trait continua can provide a useful framework to link life‐history variation with demographic and evolutionary processes in species richness gradients. Taking an altitudinal species richness gradient for Mediterranean butterflies as a study case, we examined a suite of traits (larval diet breadth, adult phenology, dispersal capacity and wing length) and species‐specific habitat measures (temperature and aridity breadth). We tested whether traits and species‐specific habitat measures tend to co‐vary, whether they are phylogenetically conserved, and whether they are able to explain species distributions and spatial genetic variation in a large number of butterfly assemblages. Location Catalonia, Spain. Methods We formulated predictions associated with species richness gradients and adaptive trait continua. We applied principal components analyses (PCAs), structural equation modelling and phylogenetic generalized least squares models. Results We found that traits and species‐specific habitat measures covaried along a main PCA axis, ranging from multivoltine trophic generalists with high dispersal capacity to univoltine (i.e. one generation per year), trophic specialist species with low dispersal capacity. This trait continuum was closely associated with the observed distributions along the altitudinal gradient and predicted inter‐specific differences in patterns of spatial genetic variability (FST and genetic distances), population responses to the impacts of global change and local turnover dynamics. Main conclusions The adaptive trait continuum of Mediterranean butterflies provides an integrative and mechanistic framework to: (1) analyse geographical gradients in species richness, (2) explain inter‐specific differences in population abundances, spatial distributions and demographic trends, (3) explain inter‐specific differences in patterns of genetic variation (FST and genetic distances), and (4) study specialist–generalist life‐history transitions frequently involved in butterfly diversification processes.  相似文献   

18.
Aim Elevational gradients offer an outstanding opportunity to assess factors determining patterns of species richness, but along single transects potential explanatory factors often covary, making it difficult to distinguish between competing hypotheses. Many previous studies on plants have interpreted their results as supporting the mid‐domain effect (MDE) as a major determinant of species richness, even when climatic factors showed similarly high explanatory power. We compared fern species richness along 20 elevational transects to quantify the relative contribution of climate and MDE as drivers of elevational richness patterns. Location Twenty transects world‐wide. Methods Ferns were sampled in 1039 plots of 400–2500 m2 each. Mean annual precipitation and temperature, epiphytic bryophyte cover (as a proxy for air humidity) and MDE predictions were included as independent variables. For each transect, we calculated multiple linear models and partitioned the variance to assess the relative contribution of the independent variables, selecting the most parsimonious models based on Akaike weights and multi‐model inference. Results Along most individual gradients, nearly all variance of fern species richness that could be attributed to either space or MDEs was collinear with climatic factors. Yet, the comparison across transects showed that elevational richness patterns are most parsimoniously accounted for by climatic conditions, especially by low water availability at low elevations and in dry regions in general, and by low temperatures at high elevations and in extra‐tropical regions. Main conclusions Fern species richness is most closely related to climatic factors, and while MDE, surface area and metapopulation processes may somewhat modify the patterns, their importance has been overstated in the past. Future research challenges include determining whether the richness–climate relationship reflects: (1) a direct relationship through the physiological tolerance of the plants, (2) an indirect influence of climate on ecosystem productivity, or (3) an evolutionary legacy of longer or faster diversification processes under certain climatic conditions.  相似文献   

19.
Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large‐scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (e.g. environmental niche versus dispersal limitation of species) remains elusive, and the influence of species range size has been poorly tested. Here, using distribution maps of 11 405 woody species in China (ca 9.6 × 106 km2), we investigated 1) the geographical and directional patterns of beta diversity for all woody species and species with different range sizes, and 2) compared the effects of environmental and spatial processes on these patterns. Beta diversity was calculated as the decay of similarity in species composition with increasing distance. Variables representing environmental energy, water availability, climatic seasonality, habitat heterogeneity and human activities were used to evaluate the effects of environmental processes, while spatial distance was used to assess the influence of spatial processes. The results indicated significant directional patterns of beta diversity: the similarity decay along the latitudinal gradient was 1.6–2.3 times faster than that along the longitudinal gradient. Beta diversity also increased with the decrease of species range size. As compared with spatial processes, environmental processes had stronger effects on longitudinal beta diversity and on the beta diversity of widely‐ranged species. This was opposite to the larger influence of spatial processes on latitudinal beta diversity and the beta diversity of narrowly‐ranged species. These results suggest that the distributions of narrowly‐ranged woody species in China may have not reached equilibrium with their environmental niches due to dispersal limitation induced by China's topography and/or their low dispersal ability. The projected rapid climatic changes will likely endanger such species. Species dispersal processes should be taken into account in future conservation strategies in China.  相似文献   

20.
Determining how ecological and evolutionary processes produce spatial variation in local species richness remains an unresolved challenge. Using mountains as a model system, we outline an integrative research approach to evaluate the influence of ecological and evolutionary mechanisms on the generation and maintenance of patterns of species richness along and among elevational gradients. Biodiversity scientists interested in patterns of species richness typically start by documenting patterns of species richness at regional and local scales, and based on their knowledge of the taxon, and the environmental and historical characteristics of a mountain region, they then ask whether diversity–environment relationships, if they exist, are explained mostly by ecological or evolutionary hypotheses. The final step, and perhaps most challenging one, is to tease apart the relative influence of ecological and evolutionary mechanisms. We propose that elucidating the relative influence of ecological and evolutionary mechanisms can be achieved by taking advantage of the replicated settings afforded by mountains, combined with targeted experiments along elevational gradients. This approach will not only identify potential mechanisms that drive patterns of species richness, but also allow scientists to generate more robust hypotheses about which factors generate and maintain local diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号