首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance.  相似文献   

2.
Borneo contains a diverse rainforest butterfly community, but its forests are under threat from logging and ENSO- (El Niño Southern Oscillation) induced fires. Contrasts in butterfly assemblage structure were examined in nine 450 ha landscapes in logged forest, primary unburned continuous and isolated forest, and forest affected by surface fires during the 1997/98 ENSO event. Temporally the effect of the 1997/98 ENSO event was followed in a single burned landscape from 1997 to 2004. In total, 517 species were present in 190 sampling sites. There was a five-fold difference in species richness among landscapes, with highest richness in continuous landscapes and lowest richness in burned landscapes. Richness was also higher in logged forest than proximate unlogged forest. Temporally, species richness dropped dramatically from 1997 to 1998, but afterwards increased remaining, however, substantially lower than pre-ENSO (1997) sampling. Sites in burned landscapes were distinct from other sites in terms of vegetation structure with the slash-and-burn area the most dissimilar to other landscapes. There was much less structure among unburned landscapes. The pattern of butterfly community composition was similar to that of vegetation structure with the community from the slash-and-burn area the most distinct. However, there was much less overlap among sites from different landscapes. Temporally, 1998 possessed the most distinct assemblage when compared to assemblages from other years. The community composition was, however, slowly returning to a pre-disturbance composition. Variance in community composition explained by environmental and spatial factors differed substantially among landscapes. The spatial fraction was the only explanatory component in recently burned landscapes and a proximate small unburned isolate, but explained no variation in logged landscapes. The environmental fraction explained substantial amounts of variation in logged landscapes and the slash-and-burn area. When all landscapes were pooled high proportions of variation in butterfly community composition were explained by both geographic distance between sites and environmental variables. In contrast when only unburned landscapes were considered, most variation was explained by the geographic distance among them. Despite differences among landscapes there was a general pattern of relatively sharp decline in similarity at short distances that levels out over greater distances, a result that agrees with previous studies on other tropical species assemblages.  相似文献   

3.
Abstract:  The impact of logging on the relative abundance, species richness and community composition of four butterfly guilds (generalists, herb specialists, liana specialists and tree specialists) was assessed in differentially disturbed logging treatments located within the province of Central Kalimantan, Indonesian Borneo. Logging affected the overall butterfly composition by increasing the dominance of liana specialists at the expense of tree specialists and increasing the species richness of herb specialists and, to a lesser extent, generalists. There was no significant difference, however, in the species richness of liana specialists or tree specialists across logging treatments. The species composition of all guilds differed significantly among logging treatments with the greatest difference between unlogged forest and road sites with older and recently logged forest intermediate between these extremes. Our results indicate that logging has a disparate effect on abundance and species richness within each butterfly guild. We suggest that shifts in the dominance of butterfly guilds are due to large-scale logging-induced changes in vegetation, particularly in relation to liana abundance. The higher butterfly species richness in logged areas on the other hand is probably because of butterfly species associated with open areas entering the logged forest from roads or other large open areas.  相似文献   

4.
We assess the differential impact of logging and ENSO (El Niño Southern Oscillation)-induced disturbance on the relative butterfly abundance and species richness of range-restricted and widespread species within the island of Borneo. Relative abundance and species richness were assessed using rarefaction and species accumulation curves in unburned isolates surrounded by burned forest, the burned forest itself, and continuous forest unaffected by ENSO-induced disturbance in addition to logged and unlogged landscapes in unburned forest. The relative abundance of endemics was significantly higher in unlogged forest than logged forest and significantly higher in unburned forest than burned forest. Rarefied species richness of range categories was similar (Bornean endemics) or higher (other categories) in selectively logged than unlogged forest. In contrast, rarefied species richness of range-restricted species was highest in continuous forest, intermediate in unburned isolates, and lowest in burned forest. Only two individuals of a single Bornean endemic species were found in all the burned forest. Although species richness was higher in all range categories in continuous forest than in unburned isolates and in burned forest, the difference was most pronounced for range-restricted species. Logging and ENSO-induced fires thus have contrasting effects on range-restricted species. While both increase the relative abundance of widely distributed species at the expense of range-restricted species, only ENSO-induced disturbance lowers the rarefied number of restricted range species. Our research highlights the threat that severe ENSO events pose to geographically restricted classes of biodiversity.  相似文献   

5.
Studies on the impact of logging on tropical forest butterflies have been almost exclusively conducted in moist forest habitats. This study considers the impacts of small-scale logging on butterfly communities at three sites of varying disturbance intensity in a tropical dry forest in western Thailand. Butterfly species richness was similar at all sites, but the abundance of butterflies and diversity of the butterfly community decreased with increased logging disturbance. The recorded decrease in diversity at the relatively large sampling scale used lends further support to the hypothesis that disturbance effects are scale dependent. Species abundance data for butterflies fitted a log-normal distribution at all sites, but also a log-series distribution at the two disturbed sites. These analyses suggest a more complex butterfly community at the undisturbed site, but also that log-series and log-normal distributions may not to be sufficiently sensitive to be useful indicators of community changes following logging. Community ordination separates both the butterfly species and transect samples into three distinct regions corresponding to the three study locations. Ordination axes are correlated with tree density, understorey cover and understorey plant richness. Species with the smallest geographic ranges tend to be the least abundant and occurred most frequently in the undisturbed site. The observed diverging responses to disturbance among butterfly families diminishes the value of butterfly communities as biodiversity indicators, and forest managers should perhaps focus on restricted range species or of groups of recognized sensitive species for this purpose.  相似文献   

6.
Previously extensive tracts of primary rain forest have been degraded by human activities, and we examined how the effects of forest disturbance arising from habitat fragmentation and commercial selective logging affected ecosystem functioning in these habitats by studying leaf litter decomposition rates in litter bags placed on the forest floor. The rain forests of Borneo are dominated by trees from the family Dipterocarpaceae, and we compared leaf litter decomposition rates of three dipterocarp species at eight forest fragment sites (area 3–3529 ha) that had different histories of disturbance pre‐fragmentation: four fragments had been selectively logged prior to fragmentation and four had been formed from previously undisturbed forest. We compared these logged and unlogged forest fragments with sites in continuous forest that had been selectively logged (two sites) and fully protected and undisturbed (two sites). After 120 d, undisturbed continuous forest sites had the fastest rates of decomposition (52% mass loss). Forest fragments formed from unlogged forest (32% mass loss) had faster decomposition rates than logged forest fragments (28% mass loss), but slower rates than continuous logged forest (39% mass loss). Leaves of a light‐demanding species (Parashorea malaanonan) decomposed faster than those of a shade‐tolerant species (Hopea nervosa), but decomposition of all three dipterocarp species that we studied responded similarly to logging and fragmentation effects. Reduced decomposition rates in logged and fragmented forest sites may affect nutrient cycling and thus have detrimental consequences for forest regeneration. Conservation management to improve forest quality should be a priority, particularly in logged forest fragments.  相似文献   

7.
Commercial selective logging and the conversion of primary and degraded forests to agriculture are the biggest threats to tropical biodiversity. Our understanding of the impacts of these disturbances and the resulting local extinctions on the functional roles performed by the remaining species is limited. We address this issue by examining functional diversity (FD), which quantifies a range of traits that affect a species' ecological role in a community as a single continuous metric. We calculated FD for birds across a gradient of disturbance from primary forest through intensively logged forest to oil palm plantations on previously forested land in Borneo, Southeast Asia, a hotspot of imperilled biodiversity. Logged rainforest retained similar levels of FD to unlogged rainforest, even after two logging rotations, but the conversion of logged forest to oil palm resulted in dramatic reductions in FD. The few remaining species in oil palm filled a disproportionately wide range of functional roles but showed very little clustering in terms of functional traits, suggesting that any further extinctions from oil palm would reduce FD even further. Determining the extent to which the changes we recorded were due to under‐utilization of resources within oil palm or a reduction in the resources present is an important next step. Nonetheless our study improves our understanding of the stability and resilience of functional diversity in these ecosystems and of the implications of land‐use changes for ecosystem functioning.  相似文献   

8.
We examined the effect of selective logging and corresponding forest canopy loss on arboreal ant diversity in a tropical rainforest. Arboreal ants were collected from an unlogged forest plot and from forest plots selectively logged 14 years and 24 years earlier in Danum Valley, Sabah, Malaysia, using a canopy fogging method. Selective logging was associated with a significant decrease in canopy cover and an increase in understory vegetation density relative to unlogged forest. Our study showed that selective logging in primary forest might not dramatically decrease total species number and overall abundance of arboreal ants; however, it may influence the species composition and dominance structure of the ant community, accompanied by an increase in abundance of shrub‐layer species and trophobiotic species. In view of the results of this study, management techniques that minimize logging impact on understory vegetation structure are likely to help maintain the conservation value of logged forests for arboreal ants. Our results also suggest that accurate assessment of the impacts on biodiversity should not be based only on measurement of species number and overall abundance, but also on analysis of species composition and community structure.  相似文献   

9.
Isaiah Owiunji 《Ostrich》2013,84(1-2):216-219
Owiunji, I. 2000. Changes in avian communities of Budongo Forest Reserve after 70 years of selective logging. Ostrich 71 (1 & 2): 216–219.

Budongo Forest Reserve, located in the west of Uganda, has been selectively logged for timber for over 70 years, and has a well documented management history. Changes in the avian community, species diversity and relative densities were assessed in two unlogged and three logged and arboricidally treated compartments. Tree-species diversity was highest in the disturbed forest. Over 100 forest bird species were recorded (including a new record for East Africa, Puvel's Illadopsis Illadopsis puveli. Both point counts and mist-netting showed that bird species diversity was higher in the logged and treated than in the unlogged forest. Five species had significantly higher densities in logged forest, three species had significantly higher densities in unlogged forest and 14 species showed no significant change in densities. The response of Budongo Forest birds to disturbance was species-specific.  相似文献   

10.
Cleary DF 《Oecologia》2003,135(2):313-321
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates.The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.  相似文献   

11.
We compared bird diversity and frequency in selection logged and unlogged forest to determine the effects of recent selection logging on avian biodiversity in a subtropical, moist evergreen forest. We used a combination of mist netting and fixed-radius point counts to assess bird communities in February and March 1993 in northwestern Belize. Vegetation structure and composition was similar in logged and unlogged forest. The 66 most common species occurred with statistically similar frequency in logged and unlogged forest although 13 species were two times more frequent in intact forest. Numbers of total bird species were similar between logging gaps and the logged forest matrix, and between the logged forest matrix and unlogged forests. A comparison of numbers of species in 26 guilds based on migration strategy, diet, foraging substrate, and height strata also showed them to be similar regardless of logging history. Our results differed from previous studies that reported lower bird species richness and abundance of individual species in logged tropical forests than in unlogged forest. The differences might be explained by the lower logging intensity and/or greater levels of natural disturbance in our study area compared to previous studies.  相似文献   

12.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

13.
Selective logging with natural regeneration is advocated as a near‐to‐nature strategy and has been implemented in many forested systems during the last decades. However, the efficiency of such practices for the maintenance of forest species are poorly understood. We compared the species richness, abundance and composition of ground‐dwelling beetles between selectively logged and unlogged forests to evaluate the possible effects of selective logging in a subtropical broad‐leafed forest in southeastern China. Using pitfall traps, beetles were sampled in two naturally regenerating stands after clearcuts (ca. 50 years old, stem‐exclusion stage: selectively logged 20 years ago) and two mature stands (> 80 years old, understory re‐initiation stage: selectively logged 50 years ago) during 2009 and 2010. Overall, selective logging had no significant effects on total beetle richness and abundance, but saproxylic species group and some abundant forest species significantly decreased in abundance in selectively logged plots compared with unlogged plots in mature stands. Beetle assemblages showed significant differences between selectively logged and unlogged plots in mature stands. Some environmental characteristics associated with selective logging (e.g., logging strategy, stand age, and cover of shrub and moss layers) were the most important variables explaining beetle assemblage structure. Our results conclude that selective logging has no significant impacts on overall richness and abundance of ground‐dwelling beetles. However, the negative effects of selective logging on saproxylic species group and some unlogged forest specialists highlight the need for large intact forested areas for sustaining the existence of forest specialist beetles.  相似文献   

14.
Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land‐use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once‐logged and twice‐logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell–cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land‐use changes on the interaction of soil microbes.  相似文献   

15.
The inclusion of carbon stock enhancements under the REDD+ framework is likely to drive a rapid increase in biosequestration projects that seek to remove carbon from the atmosphere through rehabilitation of degraded rainforests. Concern has recently been expressed, however, that management interventions to increase carbon stocks may conflict with biodiversity conservation. Focusing on a large-scale rainforest rehabilitation project in northern Borneo, we examine the broad impacts of selective logging and subsequent carbon enhancement across a wide range of invertebrate fauna by comparing the abundance of 28 higher-level taxa within two separate rainforest strata (leaf-litter and understorey) across unlogged, naturally-regenerating and rehabilitated forest. We additionally assess changes in functional composition by examining responses of different feeding guilds. Responses of individual taxa to forest management were idiosyncratic but logging resulted in more than a 20% increase in total invertebrate abundance, with fewer than 20% of taxa in either stratum having significantly lower abundance in logged forest. Rehabilitation resulted in a marked reduction in abundance, particularly among leaf-litter detritivores, but overall, there were much smaller differences between unlogged and rehabilitated forest than between unlogged and naturally regenerating forest in both total invertebrate abundance and the abundances of different feeding guilds. This applied to both strata with the exception of understorey herbivores, which were more abundant in rehabilitated forest than elsewhere. These results support previous data for birds suggesting that carbon stock enhancement in these forests has only limited adverse effects on biodiversity, but with some impacts on abundance within particular guilds.  相似文献   

16.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

17.
Understanding how ecological communities change over time is critical for biodiversity conservation, but few long‐term studies directly address decadal‐scale changes in both the within‐ and among‐community components of diversity. In this study, we use a network of permanent forest vegetation plots, established in Great Smoky Mountains National Park (USA) in 1978, to examine the factors that influence change in community composition within and among communities. In 2007, we resampled 15 plots that were logged in the late 1920s and 15 plots that had no documented history of intensive human disturbance. We found that understory species richness decreased by an average of 4.3 species over the 30‐yr study period in the logged plots, but remained relatively unchanged in the unlogged plots. In addition, tree density decreased by an average of 145 stems ha?1 in the logged plots, but was relatively stable in the unlogged plots. However, we found that historic logging had no effect on within‐community understory or tree compositional turnover during this time period. Instead, sites at lower elevations and sites with lower understory biomass in 1978 had higher understory compositional turnover than did sites at higher elevations and sites with higher understory biomass. In addition, sites with lower soil cation exchange capacity (CEC) and with lower tree basal area in 1978 had higher tree compositional turnover than did sites with higher soil CEC and higher tree basal area. Among‐community similarity was unchanged from 1978 to 2007 for both the logged and unlogged plots. Overall, our results indicate that human disturbance can affect plant communities for decades, but the extent of temporal change in community composition may nevertheless depend more on environmental gradients and community attributes.  相似文献   

18.
In this paper we tested the hypothesis that logging effects in the adult tree community reverberate upon the regeneration contingent. We examined the differences on the tree community between forest reserves and 10 year-old logged areas in the Yucatan Peninsula. We used a paired design in three independent sites to estimate the effects of logging on tree species richness, diversity, composition and structure. Analyses were conducted differentiating individuals of four diameter-size classes: 1–5, 5–10, 10–25, and >25 cm DBH. We found out that there were differential effects by size. Species richness in the smaller and larger diameter-size classes was significantly lower in logged areas. Floristic composition was also different between logged and unlogged areas, with a trend towards more secondary forest associated species and less primary forest associated species in logged areas, and a higher density of species represented by a single individual in unlogged reserves. In terms of structure, trees DBH <10 cm, lianas, and re-sprouting stumps were more abundant in logged areas. Our findings suggest that 10 years after logging, harvested areas show alterations in structure, and potentially a reduction in species richness. We suggest that to make timber extraction and forest conservation compatible at this site, it is necessary to gain a better understanding of the ecology and regeneration requirements of the less abundant species, and to assess whether current logging practices might hinder their permanence in the study area.  相似文献   

19.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

20.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号