首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy   总被引:1,自引:0,他引:1  
Prunus is a large and economically important genus with considerable morphological variation. The evolution of vegetative and reproductive characters are examined here by parsimony reconstruction on trees obtained from data of ITS, trnL-trnF, trnS-trnG, and 25 morphological characters of 37 species of Prunus and representatives of eight other genera of Rosaceae. Prunus grayana is supported as the sister species to the rest of Prunus and the common ancestor of Prunus is reconstructed as having deciduous and serrated leaves, leafy racemes and fruit with well-developed pericarp. All diagnostic characters used in classification of the raceme-bearing species show some degree of convergent evolution and do not reflect phylogenetic relatedness. Some character states, such as evergreen foliage and entire leaf margin, are likely adaptations to environments with higher humidity and mean temperature. However, these hypotheses need to be tested by including species formerly classified in genus Pygeum, which were not available for this study. A clade consisting of subgenera Prunus, Amygdalus, Emplectocladus and section Microcerasus (formerly in subgenus Cerasus) is characterized by having axillary buds organized in groups of three, two of which give rise to flowers or inflorescences and one to a vegetative shoot. Fruits with thin pericarps are common in Prunus but they arose more than once independently. Dry fruits also evolved more than once, and only in species of Prunus living in arid environments, suggesting that this feature is another example of adaptation. Maddenia hypoleuca is nested within Prunus and the morphological characters used to segregate it from Prunus have been misinterpreted or are also found in species of Prunus previously classified in genus Pygeum.  相似文献   

2.
The pericarp anatomy of representatives of all subgenera and sections of the genus Rosa was studied. All species have the same basic pericarp structure: it is composed of inner and outer endocarps, mesocarp and exocarp formed by the epidermis and hypodermis. The differences concern mainly the thickness of particular layers, and the shape and size of their cells. Cells of the endocarp and mesocarp are thick-walled. The only exception is Rosa rugosa mesocarp, which is composed of rather thin-walled cells with a large lumen. The endocarp structure of Rosa achenes resembles the drupe of the genus Prunus s.l. and drupelets of Rubus species.  相似文献   

3.
Responses of 17 Prunus rootstocks or accessions (11 from the subgenus Amygdalus and 6 from the subgenus Prunophora) were evaluated against 11 isolates of Meloidogyne spp. including one M. arenaria, four M. incognita, four M. javanica, one M. hispanica, and an unclassified population from Florida. Characterization of plant response to root-knot nematodes was based on a gall index rating. Numbers of females and juveniles plus eggs in the roots were determined for 10 of the rootstocks evaluated against one M. arenaria, one M. incognita, one M. javanica, and the Florida isolate. These 10 rootstocks plus Nemaguard and Nemared were retested by growing three different rootstock genotypes together in containers of soil infested individually with each of the above four isolates. Garfi and Garrigues almonds, GF.305 and Rutgers Red Leaf peaches, and the peach-almond GF.677 were susceptible to all isolates. Differences in resistance were detected among the other rootstocks of the subgenus Amygdalus. The peach-almond GF.557 and Summergrand peach were resistant to M. arenaria and M. incognita but susceptible to M. javanica and the Florida isolate. Nemaguard, Nemared, and its two hybrids G x N no. 15 and G x N no. 22 were resistant to all but the Florida isolate. In the subgenus Prunophora, Myrobalan plums P.1079, P.2175, P.2980, and P.2984; Marianna plum 29C; and P. insititia plum AD.101 were resistant to all isolates. Thus, two different genetic systems of RKN resistance were found in the subgenus Amygdalus: one system acting against M. arenaria and M. incognita, and another system also acting against M. javanica. Prunophora rootstocks bear a complete genetic system for resistance also acting against the Florida isolate. The hypotheses on the relationships between these systems and the corresponding putative genes of resistance are presented.  相似文献   

4.
Almond and its related wild species, which are widely distributed in Central and West Asia, have high genetic variation. This is an important source of genetic diversity for crop improvement. In this study a set of 32 SSR and 12 EST-SSR primer pairs were used to determine genetic diversity in 89 accessions of almond and other Prunus species. Most of the accessions (68) were collected from natural habitats of Iran. SSR primers amplified higher numbers of alleles than EST-SSR markers and discriminated genotypes more effectively. Results indicated high diversity among accessions. Observed heterozygosity (Ho) was 0.581. Nei’s index of diversity (He) and average number of alleles per locus (na) were 0.885 and 34, respectively. The mean value of polymorphism information content (PIC) was 0.874. The average Fst (F-statistics index) was 0.271 and the fixation index (Fis) was 0.151. Estimated variance among putative populations (AP) and individuals (AI) and within individuals (WI) were 5, 35, and 60%, respectively, which revealed that most of the variation was distributed among individuals rather than groups. Cultivated almonds were highly similar to P. fenzeliana, which is native to West Asia, supporting the importance of these regions in almond domestication. In the dendrogram of groups, minimum genetic distance was observed between Amygdalus and Orientalis groups from the Euamygdalus section. The Leptopus and Chameamygdalus sections were more distant from almonds than plums. The results also showed Dodecandra (Lycioides) series should be taxonomically classified closer to the section Euamygdalus.  相似文献   

5.
Excavation of the Epipalaeolithic levels of the cave site Öküzini in southwest Anatolia produced many nutshell remains, mainly endocarp fragments belonging either to Prunus or Amygdalus. Morphological comparison with the range of potential species and present geographical distribution made it possible to refine the determination to either of two species of wild almond, Amygdalus orientalis or A. graeca . These plants could grow in the surroundings of the site on rocky slopes or sandy hills and had to be collected during late summer. All wild Amygdalus seeds are toxic, so that their use as food is disputed. This paper explores the detoxification possibilities, nutritional properties and ethnographic analogies for the use of wild almonds. It comes to the conclusion that the seeds probably played a notable role in the diet of the Epipalaeolithic population of southwest Anatolia, complementing meat and other plant food. An examination of further prehistoric nutshell finds from Anatolia supports a long and widely distributed tradition of almond use.  相似文献   

6.
Characterization of peroxidases in lignifying peach fruit endocarp   总被引:13,自引:2,他引:11       下载免费PDF全文
Developing peach (Prunus persica L. Batsch `Redskin') fruit were used to characterize the role of peroxidases in lignification. During development, the endocarp of these drupes becomes lignified while the mesocarp remains parenchymatous. Acidic peroxidase from lignifying endocarp were similar to those of the fleshy mesocarp. The endocarp had a larger amount and number of basic peroxidases than the mesocarp. Cultured peach leaf cells are thought to be lignified because their walls give a positive reaction with phloroglucinol-HCI. These cells also secreted a basic peroxidase. Peroxidases were difficult to extract from endocarp tissue as they lignified. This was also demonstrated by tissue printing on nitrocellulose. Flesh, but not endocarp peroxidase was evident in tissue prints. This suggests that tissue printing may fail to reveal the presence of enzymes which are firmly attached to the cell.  相似文献   

7.
This paper deals with the relative growth of three different fruit tissues. Their morphogenetic periods and the mathematical constraints involved are described, and more precisely, the paper shows an allometric relationship (Y=nX m ) between the widths (X, Y) of the main tissues in stone fruits such as cherries, peaches and prunes. The mathematical relationships between the growth of the mesocarp and of the endocarp of somePrunus fruits are described, and it is proved that before the formation of the embryo, growth is allometric, in agreement with conclusions drawn from some experimental data. However, according to another study, the growth of the mesocarp and of the endocarp are ruled by autocatalytic and monomolecular functions, before as well as after the formation of the embryo. In this case, it is proved that if allometry exits in stone fruits, it can only be anantiometry (m=−1). To solve the dilemma, two main alternatives are proposed and discussed. We conclude that, while allometry is established on reasonable grounds before the formation of the embryo, after the formation of the embryo the mesocarp and endocarp evolve independently since a center for the coordination of growth no longer exists, and each tissue can grow according to its own independent rules.  相似文献   

8.
Chloroplast DNA (cpDNA) restriction-site mutations in seven cultivated Prunus species were compared to establish the phylogenetic relationships among them. Mutations were detected in 3.2-kb and 2.1-kb amplified regions of variable cpDNA, cut with 21 and 10 restriction endonucleases, respectively, to reveal polymorphisms. Parsimony and cluster analyses were performed. The species pairs P. persica-P. dulcis, P. domestica-P. salicina, and P.cerasus-P. fruticosa were completely monophyletic. All of the species were grouped with conventional subgenus classifications. The subgenus Cerasus was the most diverged. Cerasus ancestors separated from the remainder of Prunus relatively early in the development of the genus. P. persica-P. dulcis, P. domestica-P. salicina and P. armeniaca formed a second monophyletic group. Prunophora species were less diverged than Amygdalus species. The results also suggest that the rate of mutation in Cerasus spp. chloroplast genomes is significantly greater than for the other subgenera sampled.  相似文献   

9.
Sources of resistance in Prunus spp. exhibit different spectra to the root-knot nematodes (RKN) Meloidogyne incognita, Meloidogyne javanica and Meloidogyne floridensis. In this Prunus genus, two dominant genes, Ma with a complete spectrum from the heterozygous Myrobalan plums P.2175 and P.2980 (section Euprunus; subgenus Prunophora) and RMia with a more restricted spectrum from the peaches Nemared and Shalil (subgenus Amygdalus), have been identified. This study characterizes the resistance spectra of interspecific crosses involving (1) previous Myrobalan and peach sources, (2) two Alnem almonds (subgenus Amygdalus) resistant to M. javanica, and (3) the apricot A.3923, representing a species considered RKN-resistant (section Armeniaca; Prunophora). For both latter species, genetic data could be obtained through F1 crosses with genetically characterized Myrobalans that conferred their rooting ability for clonal multiplication of the hybrids and permitted their simultaneous evaluation to the three RKN. Crosses involving either Ma or RMia or both generated the expected resistance spectra. Nemared confirmed the species-specific resistance to M. incognita conferred by RMia. This rootstock, also previously considered resistant to M. javanica, was susceptible to the M. javanica isolate used, what illustrates an isolate-specific resistance to this species. Alnem accessions were shown homozygous resistant to M. javanica. In the progeny P.2980 × A.3923, Ma markers allowed to distinguish resistant individuals carrying that gene from resistant individuals lacking it. Distribution of non-Ma individuals in this cross suggested, in the apricot parent, (1) the absence of a major gene allelic to Ma and (2) the presence of a non RKN specific polygenic resistance.  相似文献   

10.
In Prunus spp., resistance genes to root-knot nematodes (RKN), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, and Meloidogyne floridensis, confer either a complete spectrum, e.g., the Ma and Rjap genes in Myrobalan and Japanese plums (subgenus Prunophora), respectively, or a more restricted spectrum, e.g., the RMia gene (M. arenaria + M. incognita) in peach (subgenus Amygdalus). We report here characterization data of the RMja gene from the almond Alnem1, another Amygdalus source. The study of its spectrum is hampered by the inability of almond to be propagated by cuttings; we overcame this problem by using F1 and BC1 crosses with previously genotyped Myrobalan plums that conferred their rooting ability to hybrids for simultaneous evaluation to different RKN. As expected from a homozygous dominant resistance, BC1 progenies of Alnem1 segregated for resistance to M. javanica but were uniformly susceptible to M. incognita and M. floridensis, demonstrating that RMja controlled M. javanica but not M. incognita nor M. floridensis. SSR markers covering the Prunus reference map placed RMja on LG7 in the same region as Ma and Rjap and thus showed its independence from the RMia gene (LG2) of the botanically closer peach. The spectrum of this gene allows the theoretical construction of interspecific rootstocks, Myrobalan plum × (almond × peach), which cumulate RMja with Ma and RMia and are protected from each of the predominant RKN affecting Prunus, i.e., M. arenaria, M. incognita, and M. javanica, by at least two genes. This pyramiding strategy should offer to rootstock material an unprecedented guarantee of durable RKN resistance.  相似文献   

11.
Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis.  相似文献   

12.
A genetic linkage map of Prunus has been constructed using an interspecific F2 population generated from self-pollinating a single F1 plant from a cross between a dwarf peach selection (54P455) and an almond cultivar Padre. Mendelian segregations were observed for 118 markers including 1 morphological (dw), 6 isozymes, 12 plum genomic, 14 almond genomic and 75 peach mesocarp specific cDNA markers. One hundred and seven markers were mapped to 9 different linkage groups covering about 800 cM map distance, and 11 markers remained unlinked. Three loci identified by three cDNA clones, PC8, PC5 and PC68.1, were tightly linked to the dw locus in linkage group 5. Segregation distortion was observed for approximately one-third of the markers, perhaps due to the interspecific nature and the reproductive (i.e. self-incompatibility) differences between peach and almond. This map will be used for adding other markers and genes controlling important traits, identifying the genomic locations and genetic characterizing of the economically important genes in the genus Prunus, as well as for markerassisted selection in breeding populations. Of particular interest are the genes controlling tree growth and form, and fruit ripening and mesocarp development in peach and almond.  相似文献   

13.
Multivariate analysis of both endocarp and leaf morphometrics is combined with cluster analysis and Bayesian inference of AFLP markers to assess the morphologic and genetic variation of five European members of Prunus section Prunus (P. cerasifera, P. domestica, P. insititia, P. spinosa, and P. × fruticans). Endocarp morphometrics separate most Prunus taxa studied, but overlap remains between P. domestica and P. cerasifera, and P. spinosa and P. × fruticans. Leaf morphometrics yield better separation of P. domestica and P. cerasifera, but do not allow distinction between P. spinosa and P. × fruticans. Both cluster analysis and PCoA of AFLP markers equally produce three distinct clusters. A first consists of all P. cerasifera samples and the sole P. cocomilia; a second cluster includes all individuals of P. domestica and P. insititia; and a third group comprises all P. spinosa and P. × fruticans samples.  相似文献   

14.
The genus Prunus contains the subgenus Prunus incorporating the European plums (section Prunus), the North American plums (section Prunocerasus) and the apricots (section Armeniaca). In section Prunus, there are approximately 20 species, which occur in three levels of ploidy, diploid ( 2n = 2x = 16 ) \left( {2n = 2x = 16} \right) , tetraploid ( 2n = 4x = 32 ) \left( {2n = 4x = 32} \right) and hexaploid ( 2n = 6x = 48 ) \left( {2n = 6x = 48} \right) . Despite a clear distinction between section Prunus and the other sections, phylogenetic relationships between species within the section are unclear. We performed a phylogenetic analysis on members of the section Prunus and three outgroup species using sequence data from four single-copy phylogenetically informative chloroplast DNA regions (atpB-rbcL, matK, rpl16, and trnL-trnF). After alignment, the analysed regions totalled 4,696 bp of sequence, containing 68 parsimony-informative sites and 14 parsimony-informative indels. Data were analysed using both maximum parsimony and Bayesian likelihood and phylogenetic trees were reconstructed. The analyses recovered trees with congruent topologies and similar levels of statistical support for relationships between taxa. They confirmed that species belonging to section Prunus form a monophyletic clade within Prunus. The section is resolved into four well-supported clades, which correspond to the geographical distribution of the species. The hexaploid species could not be resolved into distinct species clades but formed a well-supported group separate from the tetraploid species, highlighting the distinct evolutionary origins of the different polyploid groups. The close relationship between the hexaploids and Prunus divaricata, Prunus cerasifera and Prunus ursina indicates the former may have derived from an ancestor of P. cerasifera and its allies.  相似文献   

15.
This paper presents the first molecular phylogeny of the genus Hemsleya using nuclear ITS and plastid trnH-psbA, rpl16, and trnL DNA sequences to examine the relationships among Hemsleya species. Phylogenetic relationships were elucidated using a combined analysis of all four datasets, however, the number of parsimony-informative characters was still insufficient to resolve all relationships. Parsimony and Bayesian trees were highly congruent. Twenty-three species of Hemsleya split into two major clades corresponding to two subgenera, i.e., subg. Graciliflorae and subg. Hemsleya. These results are partly in agreement with Li’s sectional classification. However, the molecular data are inconsistent with Li’s classification at the subsectional level. The molecular phylogeny revealed a striking overall correlation between the phylogenetic relationships of the species and their geographical distribution. The Kangdian ancient landmass could be the center of origin of the genus.  相似文献   

16.
Polyploidization has long been recognized as one of the most important driving forces of plant evolution. Aconitum subgenus Lycoctonum (Ranunculaceae) has a wide distribution range and well-known background of polyploidy, thereby providing a potentially valuable model to explore polyploid origin and evolutionary history. However, the phylogeny of subg. Lycoctonum has not yet been completely resolved. In the current study, 29 species including diploid, tetraploid and hexaploid species were sampled in subg. Lycoctonum. Using four cpDNA regions (ndhF-trnL, psbA-trnH, psbD-trnT and trnT-L) and two nrDNA regions (internal transcribed spacer, ITS, and external transcribed spacer, ETS), phylogenetic relationship was first reconstructed for the polyploid species within subg. Lycoctonum. In combination with nuclear diversification rate estimation, cpDNA haplotype network, ancestral area reconstruction as well as morphological and karyotypic evidence, potential origin and divergence time were further assessed among the polyploid species. Hybridization was inferred for A. angustius and A. finetianum was suggested to be the potential maternal progenitor, due to their close phylogenetic relationship, highly similar morphologies and overlapping distribution range. Local origin was inferred for tetraploids in the Hengduan Mountains (HDM) with eight groups of chromosomes of four homeologous, which diverged approximately 3.00 Ma in the same period of the orogeny of the HDM. The hexaploid A. apetalum was inferred to suffer from geographical isolation due to the formation of the Qinghai–Tibetan Plateau (QTP) and the HDM. Hybridization and heterogeneous habitats in the HDM were suggested to play an important role in the polyploidization in subg. Lycoctonum.  相似文献   

17.
扁桃幼果发育的形态解剖学研究   总被引:1,自引:0,他引:1  
以普通扁桃品种‘纸皮’为研究对象,观察测定了扁桃幼果生长发育动态,并采用石蜡切片法研究了扁桃幼果发育过程。结果表明,扁桃幼果鲜重、体积及果径增长均呈单“S”曲线。大体可分为3个生长时期,增长速率为:第Ⅱ期>第I期>第Ⅲ期。扁桃果实由单心皮上位子房发育而成,边缘胎座,横生胚珠。果皮由外果皮、中果皮和内果皮构成:外果皮是一种复合结构,由表皮毛和表皮细胞组成;中果皮主要是由薄壁细胞和分布其中的维管束组成;内果皮也有丰富的维管束组织分布,其木质化顺序由外向内。中果皮细胞分裂终止早于内果皮。  相似文献   

18.
Salvia subg. Calosphace (Lamiaceae, Lamiales) is a highly diverse clade endemic to the New World. The phylogenetic relationships of Calosphace have been previously investigated using DNA sequences of nuclear ITS region and plastid psbA–trnH intergenic spacer, but the resulting trees lack resolution and support for many clades. The present paper reassesses the phylogenetic relationships of subgenus Calosphace, including a broader taxon sampling, with a special focus on representing previously unsampled sections, and using an additional plastid marker (trnL–trnF region). Our results show increased resolution and overall patterns of support, recovering ten main clades. Within core Calosphace, the most inclusive of these main clades, 17 new subclades were identified. Of the 42 sections for which more than one species was analysed, only 12 are monophyletic. Our biogeographical analysis identified at least twelve migrations to South America from Mexican and Central American lineages, in agreement with previous suggestions of multiple origins of South American Calosphace diversity. This analysis also confirmed a colonization of the Antilles by Andean lineages. The reconstruction of ancestral states of pollination syndromes showed multiple shifts to ornithophily from melittophily and one reversal to the latter.  相似文献   

19.
Summary An isozyme survey of 34 species of Prunus representing subgenera Prunus, Amygdalus, Cerasus, and Lithocerasus detected 110 presumptive alleles at 11 isozyme loci. Principal component analysis was conducted on the covariance matrix derived from allelic frequencies calculated for each species. Cluster analysis was performed on the first 30 principal components. Results generally support traditional classification of Prunus at the subgeneric level, except for members of subgenus Lithocerasus and two members of subgenus Amygdalus. Prunus glandulosa Thunb., P. japonica Thunb., and P. tomentosa Thunb. of subgenus Lithocerasus and P. triloba Lindl. of subgenus Amygdalus appear to represent primitive species. P. besseyi Bailey and P. pumila L. of subgenus Lithocerasus and P. andersonii of subgenus Amygdalus should be assigned to subgenus Prunus. Placement of its members indicates that subgenus Lithocerasus is an artificial grouping of species that are very different genetically although similar phenotypically.Paper No. 12529 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA  相似文献   

20.
The exocarp sensu lato , which develops from the outer epidermis and adjacent parenchyma of the ovary wall, consists of collenchyma cells with a stomatous epidermis. The fleshy, parenchymatous mesocarp or sarcocarp develops after endocarp differentiation. The endocarp is partly spongy and partly woody. The spongy endocarp contains most of the vascular tissue and fills the cavities and grooves of the intricately sculptured outer woody endocarp. The inner woody endocarp and adjacent woody, endocarpal operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall. The bitegmic, anatropous ovule develops into a derived, exalbuminous seed with an undifferentiated seed-coat. An extensive chalaza, extensive hypostase sensu lato and the raphe are important in the development of the seed-coat. The pericarp and seed-coat of H. caffrum is compared with those of Sclerocarya birrea subsp. caffra and Lannea discolor . The close phylogenetic relationship of these three species of the Spondieae is reaffirmed. The marked similarities in pericarp and seed structure between H. caffrum and species of the genus Spondias are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号