首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent calcium indicator, fluo-3, was loaded as the membrane permeant tetraacetoxymethyl (AM) ester into cauda epididymal mouse sperm at 25°C for 20 min in the absence of bovine serum albumin (BSA) and presence of the dispersant, Pluronic F-127. Excess indicator was removed by two centrifugation washes at 100g for 10 min, a procedure that did not impair sperm motility. Upon resuspension in medium containing 20 mg/ml BSA to promote capacitation, the sperm cells exhibited readily detectable fluorescence uniformly distributed in the cytoplasm. Cell fluorescence was stable over the time of the experiments and was responsive to changes in intracellular calcium concentration, [Ca2+]j. Initial [Ca2+]j was 231 ± 58 nM (±SE, n = 43). Addition of heat-solubilized mouse zonae pellucidae to capacitated sperm increased [Ca2+]j by 106 ± 19 nM (±SE, n = 18), the higher steady-state concentration being reached after 30 min. Subsequent addition of the non-fluorescent calcium ionophore Br-A23187 resulted in a further increase of 114 ± 18 nM (± SE, n = 18), the higher steady-state concentration being reached after 6 min. The increase in [Ca2+]j induced by solubilized zonae pellucidae was largely blocked by 3-quinuclidinyl benzilate (QNB) an antagonist of muscarinic receptors that was earlier shown to block the zona pellucida induced acrosome reaction in mouse sperm (Florman and Storey, 1982: Dev Biol 91:121–130). This [Ca2+]j increase was completely blocked by the tyrosine kinase inhibitor, tyrphostin A48, and by the inactivator of G1 proteins, pertussis toxin. At the concentrations at which they blocked the zona pellucida-induced increase in [Ca2+]j all three inhibitors also blocked the zona pellucidainduced acrosome reaction. These results indicate that [Ca2+]j increase in is an early, if not the initial, reaction in the sequence leading to zona pellucida induced acrosomal exocytosis in mouse sperm. The observation that the three inhibitors, each having a different mode of action, all block the zona pellucida induced [Ca2+]j suggests that the sperm plasma membrane receptors mediating the zona pellucida induced acrosome reaction may function as a complex, whose formation is activated by zona pellucida ligand binding. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Guanine nucleotide-binding regulatory proteins play key intermediary roles in regulating zona pellucida-mediated acrosomal exocytosis in mouse and bull sperm. Since human sperm possess a Gi-like protein and undergo the acrosome reaction in response to the human zona pellucida, we investigated whether this G protein plays a regulatory role in this exocytotic process. Zonae pellucidae isolated from eggs that had been inseminated but had shown no signs of fertilization after retrieval for in vitro fertilization and embryo transfer were pooled into groups of greater than or equal to 50 in order to reduce variability in biological responses due to the possible presence of ZP that had undergone modifications associated with the polyspermy block. Acid-solubilized zonae pellucidae were incubated with capacitated sperm, and the sperm then assessed for the acrosome reaction using both the P. sativum agglutinin and chlortetracycline fluorescence assays; both assays gave similar results. Sperm incubated with solubilized zonae pellucidae at a final concentration of 2, 4, or 6 ZP/microliter underwent acrosomal exocytosis to a similar extent as compared with A-23187. Sperm were incubated with 1 microgram/ml pertussis toxin during capacitation to functionally inactivate the Gi-like protein. Pertussis toxin treatment of sperm did not affect sperm motility and the ability of the cells to bind to structurally intact zonae pellucidae. Pertussis toxin, however, completely inhibited the percentage acrosome reactions induced by solubilized zonae pellucidae. By contrast, the A-23187-induced acrosome reaction was insensitive to PT treatment. Pertussis toxin inhibition of the zona pellucida-induced acrosome reaction occurred in a concentration-dependent manner with maximal effects observed at 100 ng/ml PT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The question of whether the acrosome reaction, which leads to fertilization, occurs in intact sperm bound to the zona pellucida of the egg or in intact sperm before contact with the egg, was addressed by assessing the effect of 3-quinuclidinyl benzilate (QNB) on the two types of acrosome reaction. QNB is a specific inhibitor of the fertilization of zona-intact mouse eggs by mouse sperm. Mouse spermatozoa in suspension underwent acrosome reactions at a low rate, which could be accelerated by addition of 5 μM divalent cation ionophore A23187; the occurrence of such acrosome reactions was not inhibited by QNB. The rate at which acrosome reactions occurred in sperm bound to the zona pellucida of cumulus-free eggs, bound to isolated zonae, or exposed to acid-solubilized zona components, was greatly accelerated relative to that observed in the absence of zonae. These acrosome reactions were strongly inhibited by QNB at concentrations which inhibit the fertilization of zona-intact mouse eggs in vitro. These data suggest that the zona pellucida can induce acrosome reactions in mouse spermatozoa and that these acrosome reactions are the ones which lead to the fertilization of zona-intact eggs. In contrast, the acrosome rection in sperm which are not in contact with the zona is not associated with fertilization of zona-intact eggs.  相似文献   

4.
The onset of the zona pellucida-induced acrosome reaction in mouse sperm is marked by loss of the pH gradient existing in acrosome-intact sperm between the acidic acrosomal lumen and the suspending medium, due to pore formation between outer acrosomal and plasma membranes. In earlier work, it was shown that this pH gradient loss occurred in single sperm bound to structurally intact zonae pellucidae with a half-time of 2.1 min; the extended kinetics of this loss determined in a sperm population bound to intact zonae was due to a 180-min range of variable lag times. We hypothesized that this lag time range was due to steric constraints imposed by the three-dimensional structure of the structurally intact zona pellucida, and that this constraint should be removed in solubilized zonae. The fluorescent probe, Dapoxyl(TM) (2-aminoethyl)sulfonamide (DAES) allowed a test of this hypothesis in a population of sperm cells. It is a weak base that is non-fluorescent in aqueous solution, but which accumulates in the acidic acrosomal compartment due to the pH gradient with highly enhanced fluorescence; loss of the pH gradient leads to a decrease in fluorescence. The half-time for DAES fluorescence loss in a population of capacitated, acrosome-intact sperm in response to solubilized zona pellucida protein was 2.13 +/- 0.10 min (SEM, n = 9). The agreement between single cell and cell population kinetics validates the hypothesis of steric constraint in the structurally intact zona pellucida. The change in intracellular Ca(2+) concentration in response to solubilized zona pellucida, as monitored with fluo-3, was a rapid increase, followed by a decrease, with a half-time of 0.85 +/- 0.09 min (SEM, n = 6) to a steady state level higher than the initial level, indicating this Ca(2+) transient as the precursor reaction to onset of the zona-induced acrosome reaction.  相似文献   

5.
Zona pellucida (ZP) is a glycoproteinaceous translucent matrix that surrounds the mammalian oocyte and plays a critical role in the accomplishment of fertilization. In humans, it is composed of 4 glycoproteins designated as ZP1, ZP2, ZP3 and ZP4, whereas mouse ZP is composed of ZP1, ZP2 and ZP3 (Zp4 being a pseudogene). In addition to a variable sequence identity of a given zona protein among various species, human ZP1 and ZP4 are paralogs and mature polypeptide chains share an identity of 47%. Employing either affinity purified native or recombinant human zona proteins, it has been demonstrated that ZP1, ZP3 and ZP4 bind to the capacitated human spermatozoa and induce an acrosome reaction, whereas in mice, ZP3 acts as the putative primary sperm receptor. Human ZP2 only binds to acrosome-reacted spermatozoa and thus may be acting as a secondary sperm receptor. In contrast to O-linked glycans of ZP3 in mice, N-linked glycans of human ZP3 and ZP4 are more relevant for induction of the acrosome reaction. Recent studies suggest that Sialyl-Lewisx sequence present on both N- and O-glycans of human ZP play an important role in human sperm?Cegg binding. There are subtle differences in the downstream signaling events associated with ZP3 versus ZP1/ZP4-mediated induction of the acrosome reaction. For example, ZP3 but not ZP1/ZP4-mediated induction of the acrosome reaction is dependent on the activation of the Gi protein-coupled receptor. Thus, various studies suggest that, in contrast to mice, in humans more than one zona protein binds to spermatozoa and induces an acrosome reaction.  相似文献   

6.
We have compared the ability of uncapacitated, capacitated acrosome intact, and acrosome-reacted hamster sperm to penetrate the cumulus and corona radiata of fresh hamster oocyte-cumulus complexes (OCC) in vitro. This was done using physiological numbers (1-20) of sperm so that cumulus and corona radiata cells did not disperse during challenge. Uncapacitated sperm did not penetrate to the zona pellucida surface; most (74%) uncapacitated sperm bound to cumulus cells at the periphery of the OCC. Capacitated acrosome-intact sperm penetrated to the zona pellucida surface; a significant percentage of these sperm arrived at the zona pellucida without showing evidence of initiating an acrosome reaction. Most capacitated acrosome-reacted sperm did not enter the extracellular matrix between cumulus and corona radiata cells; those which did penetrated to the zona surface with difficulty, if at all. These results suggest that the changes which occur in the sperm surface during capacitation are more important than the acrosome reaction in enabling hamster sperm to penetrate the cumulus and corona radiata. The effects of gold sodium thiomalate (GST) and polyphloretin phosphate (PPP) (inhibitors of hyaluronidase) on penetration of the OCC by capacitated sperm were also examined. Both synthetic inhibitors blocked sperm penetration to the zona pellucida, but the effective concentrations of inhibitors were far in excess of what was needed to block hyaluronidase activity. Reasons for concluding that the action of these inhibitors is nonspecific are discussed. These data show that hamster sperm with intact acrosomes can penetrate the cumulus and corona radiata cell layers of fresh OCC in vitro and support the hypothesis that the acrosome reaction occurs on the zona pellucida surface.  相似文献   

7.
Mammalian sperm must undergo a physiological maturation, termed capacitation, before they are able to fertilize eggs. Despite its importance, the molecular mechanisms underlying capacitation are poorly understood. In this paper, we describe the capacitation phenotype of sperm lacking the long isoform of beta1,4-galactosyltransferase I (GalT I), a sperm surface protein that functions as a receptor for the zona pellucida glycoprotein, ZP3, and as an inducer of the acrosome reaction following ZP3-dependent aggregation. As expected, wild-type sperm must undergo capacitation in order to bind the zona pellucida and undergo a Ca(2+) ionophore-induced acrosome reaction. By contrast, GalT I-null sperm behave as though they are precociously capacitated, in that they demonstrate maximal binding to the zona pellucida and greatly increased sensitivity to ionophore-induced acrosome reactions without undergoing capacitation in vitro. The loss of GalT I from sperm results in an inability to bind epididymal glycoconjugates that normally maintain sperm in an 'uncapacitated' state; removing these decapacitating factors from wild-type sperm phenocopies the capacitation behavior of GalT I-null sperm. Interestingly, capacitation of GalT I-null sperm is independent of the presence of albumin, Ca(2+) and HCO(3)(-); three co-factors normally required by wild-type sperm to achieve capacitation. This implies that intracellular targets of albumin, Ca(2+) and/or HCO(3)(-) may be constitutively active in GalT I-null sperm. Consistent with this, GalT I-null sperm have increased levels of cAMP that correlate closely with both the accelerated kinetics and co-factor-independence of GalT I-null sperm capacitation. By contrast, the kinetics of protein tyrosine phosphorylation and sperm motility are unaltered in mutant sperm relative to wild-type. These data suggest that GalT I may function as a negative regulator of capacitation in the sperm head by suppressing intracellular signaling pathways that promote this process.  相似文献   

8.
In this study the role of two intra-acrosomal molecules, acrin 1 (MN7) and acrin 2 (MC41), during in vitro fertilization (IVF) was examined. The pertinent monoclonal antibodies mMN7 and mMC41 specifically recognize a 90 kDa protein (acrin 1) localized to the entire acrosome and a 200 kDa protein (acrin 2) localized to the cortex region of the anterior acrosome, respectively. Experiments were designed to assess the effects of mMN7 and mMC41 on fertilization in mice using TYH medium containing mMN7 or mMC41 at 0.0, 0.025, 0.05 and 0.1 mg ml-1. Under these conditions, capacitated spermatozoa inseminated the cumulus-invested oocytes. Acrosome-reacted spermatozoa inseminated the zona pellucida-free oocytes. The antibodies had no effect on sperm motility and primary binding to the zona pellucida, but significantly inhibited the rate of fertilization of zona pellucida-intact oocytes in a dose-dependent manner. A significantly small number of spermatozoa remained attached to the zona pellucida at 5 h after insemination in the presence of mMC41. mMC41 and mMN7 antibodies did not affect the fertilization rate of zona pellucida-free oocytes. Confocal laser scanning microscopy with indirect immunofluorescence traced the effect of the monoclonal antibodies on the zona pellucida-induced acrosome reaction, and revealed that mMN7 prevented completion of acrosomal matrix dispersal, whereas mMC41 did not affect the acrosome reaction. mMC41 appeared to inhibit secondary binding or some biochemical steps on the zona pellucida after the acrosome reaction but before penetration of the zona pellucida. Thus, the intra-acrosomal antigenic molecules acrin 1 and acrin 2 are essential for distinct events before sperm penetration of the zona pellucida in mice.  相似文献   

9.
Capacitation is the unique process by which mammalian sperm become capable of undergoing the acrosome reaction (AR). An approach to studying sperm capacitation is to identify mutations altering this process. Male mice carrying two t haplotypes are sterile, with poor sperm motility, reduced zona pellucida binding, and an inability to penetrate zona-free oocytes. The objective of this study was to examine sperm capacitation and its potential relationship to zona pellucida binding in mice of the same genetic strain carrying none, one, or two t haplotypes. Sperm capacitation was assessed by the B pattern of staining by chlortetracycline (CTC) and by the ability of sperm to undergo the lysophosphatidylcholine (LPC)-induced AR. The CTC assay demonstrated that sperm capacitation from t/+ mice was similar to that from +/+ mice, but sperm from t/t mice were deficient. LPC induced the AR of capacitated sperm, but not noncapacitated sperm, in a concentration-dependent manner. Sperm from t/t mice were also deficient in the LPC-induced AR. Thus, by two independent assays, sperm from t/t mice were shown to be deficient in capacitation. To determine whether a deficiency in capacitation could influence zona binding, the ability of capacitated versus noncapacitated sperm to bind to the zona pellucida was tested. The mean numbers of sperm bound per oocyte were significantly greater for capacitated sperm than for noncapacitated sperm. These results suggest that the deficient capacitation of sperm from t/t mice could be responsible for, or at least contribute to, their reduced ability to bind to the zona pellucida.  相似文献   

10.
The effects of sulfated glycoconjugates on the preparation of mammalian sperm for fertilization were investigated. The three sulfated glycoconjugates tested were heparin, dextran sulfate, and the fucose sulfate glycoconjugate (FSG) from the sea urchin egg jelly coat. In vivo, FSG induces the acrosome reaction in sea urchin sperm. Bovine sperm were found to be capacitated by heparin and FSG as judged both by ability of lysophosphatidylcholine (LC) to induce an acrosome reaction and by ability to fertilize bovine oocytes in vitro. The mechanism by which heparin or FSG capacitated bovine sperm appeared similar, since glucose inhibited capacitation by both glycoconjugates. In contrast to effects on bovine sperm, heparin and FSG induced the acrosome reaction in capacitated hamster sperm. When hamster sperm were incubated under noncapacitating conditions, heparin had no effect on capacitation or the acrosome reaction. Three molecular weights (MW) of dextran sulfate (5,000, 8,000, 500,000) were found to capacitate bovine sperm as judged by the ability of LC to induce an acrosome reaction. Whereas bovine sperm incubated with 5,000 or 8,000 M W dextran sulfate fertilized more bovine oocytes than control sperm (P <0.05), sperm treated with 500,000 M W dextran sulfate failed to penetrate oocytes. The high-MW dextran sulfate appeared to interact with the zona pellucida and/or sperm to prevent sperm binding. Results suggest that sulfated glycoconjugates may prepare sperm for fertilization across a wide range of species.  相似文献   

11.
The sperm acrosome reaction and penetration of the egg follow zona pellucida binding only if the sperm has previously undergone the poorly understood maturation process known as capacitation. We demonstrate here that in vitro capacitation of bull, ram, mouse, and human sperm was accompanied by a time-dependent increase in actin polymerization. Induction of the acrosome reaction in capacitated cells initiated fast F-actin breakdown. Incubation of sperm in media lacking BSA or methyl-beta-cyclodextrin, Ca(2+), or NaHCO(3), components that are all required for capacitation, prevented actin polymerization as well as capacitation, as assessed by the ability of the cells to undergo the acrosome reaction. Inhibition of F-actin formation by cytochalasin D blocked sperm capacitation and reduced the in vitro fertilization rate of metaphase II-arrested mouse eggs. It has been suggested that protein tyrosine phosphorylation may represent an important regulatory pathway that is associated with sperm capacitation. We show here that factors known to stimulate sperm protein tyrosine phosphorylation (i.e., NaHCO(3), cAMP, epidermal growth factor, H(2)O(2), and sodium vanadate) were able to enhance actin polymerization, whereas inhibition of tyrosine kinases prevented F-actin formation. These data suggest that actin polymerization may represent an important regulatory pathway in with sperm capacitation, whereas F-actin breakdown occurs before the acrosome reaction.  相似文献   

12.
The regulation of acrosomal exocytosis in capacitated bovine spermatozoa by soluble extracts of zonae pellucidae was examined. Kinetic studies demonstrated that zonae pellucidae stimulated synchronous acrosome reactions. The t1/2 of this process was 5-10 min and response was maximal at 20 min. The apparent initial rate of exocytosis in sperm populations was dependent upon the concentration of zona pellucida protein, with an ED50 and a maximally effective dosage of 20 and 50 ng protein/microliter, respectively. Zonae pellucidae caused up to a 48-fold increase in the apparent initial rate and a 3- to 4-fold stimulation in the net occurrence of exocytosis. In contrast, solubilized zonae pellucidae did not induce acrosome reactions in uncapacitated sperm. The development of a capacitated state, as assayed by the ability of sperm to fertilize eggs in vitro, was compared to the expression of zona pellucida-regulated acrosome reactions in a series of kinetic experiments. Both activities were manifest with similar kinetics and displayed identical dependencies toward stimulatory and inhibitory agents in vitro. It is concluded that capacitation is an essential prerequisite for the induction of acrosomal exocytosis in bovine sperm by the zona pellucida.  相似文献   

13.
3-Quinuclidinyl benzilate (QNB), a potent antagonist of muscarinic acetylcholine receptors, has been demonstrated to inhibit specifically the zona pellucida (ZP)-inducud acrosome reaction (AR) in mouse sperm (Florman and Storey, 1982; Dev Biol 91:121–130). In this study we describe the solubilization and partial purification of the mouse sperm QNB binding activity which may represent a component of the putative receptor complex for ZP on the sperm plasma membrane. Sperm membranes were isolated from cell homogenates of washed, capacitated, epididymal mouse sperm. Scatchard plots of QNB binding to these membranes indicated a single class of binding sites with KD = 7.2 nM and Bmax = 8700 sites/cell. These binding characteristics are similar to those seen with QNB binding to whole cells (Florman and Storey, 1982, J Androl 3:157–164). Sperm membranes were solubilized using 1% digitonin/0.2% cholate, and the resultant detergent-soluble fraction possessed QNB binding activity similar to that of intact membranes. The detergent-soluble fraction maintained intact ZP receptor(s)–G protein coupling in that treatment of this fraction with either ZP or mastoparan resulted in a 35% or 65% increase in specific GTPγS binding, respectively. The solubilized membrane preparation was fractionated by gel permeation HPLC. A majority of specific QNB binding activity was confined to one HPLC fraction. Analysis of this fraction by SDS–PAGE revealed a complex of approximately 5 proteins unique to this fraction. The most prominent protein had a Mr of 72 kDa, which is within the Mr range for muscarinic receptors. A protein with Mr = 41 kDa was also present within this fraction. Subsequent pertussis toxin (PTX)-catalyzed ADP-ribosylation of this fraction revealed this protein to be the α subunit of the Gi class of G proteins. Although the QNB binding activity could not be positively identified, we propose that it is contained in one or more of the proteins unique to this fraction and that these proteins, including Gi, may act as part of a sperm receptor complex for the ZP. © 1994 Wiley-Liss, Inc.  相似文献   

14.
ZP3, a glycoprotein of the murine zona pellucida, functions both to bind acrosome intact sperm and to induce the acrosome reaction. Solubilized whole zonae as well as purified ZP3 are able to induce acrosome reactions in capacitated sperm. Pronase digests of whole zonae yield glycopeptides that bind to sperm but are unable to induce acrosome reactions. However, immunoaggregation of these glycopeptides results in the exocytosis of the acrosome in the majority of treated sperm. The data suggest that ZP3 triggers the acrosome reaction by the aggregation of ZP3 binding sites on the sperm head. If aggregation of ZP3 binding sites is important in the induction of the acrosome reaction, then it may be possible to induce the acrosome reaction in the absence of zona by immunoaggregation of the sites. This presentation deals with the immunoaggregation of a proteinase inhibitor of seminal vesicle origin (SVI) that binds to a site on the sperm head known to participate in zona binding. We show that capacitated murine sperm, pretreated with the SVI, will acrosome react, as determined by Coomassie brilliant blue staining, when incubated with rabbit antiinhibitor antiserum (anti-SVI). The percentage of SVI-treated sperm displaying an acrosome reaction is dependent on the concentration of the immune serum. Sperm stain positive for intact acrosomes when anti-SVI Fab fragments or normal rabbit serum is substituted for the immune serum. However, when capacitated sperm, treated with both SVI and anti-SVI Fab fragments, are incubated with goat antirabbit IgG, the majority of sperm acrosome react. The data suggest that the aggregation of SVI bound to the sperm surface, in the absence of zona glycoproteins, is sufficient to induce the acrosome reaction.  相似文献   

15.
Albumin was required specifically for penetration of the zona pellucida (less than 10% of eggs fertilized in the absence of albumin), but was not required for capacitation. A similar rate of capacitation was observed in the presence of albumin at concentrations ranging from 30 to 1 mg/ml, while a slightly slower rate was observed in the presence of 0.25 and 0.1 mg albumin/ml. In the absence of albumin, capacitation occurred at a rate which lagged behind that of the albumin-incubated counterparts by about 30 min; once capacitated, the addition of albumin promoted rapid sperm penetration. In albumin-free media (+/- the macromolecule PVA), sperm motility was frequently reduced, with fewer cells exhibiting hyperactivated motility, but improvements were observed after introduction of albumin. Acrosome loss was significantly lower in the absence of albumin, but within 5 min of its addition at concentrations ranging from 30 to 0.1 mg/ml to capacitated sperm suspensions, acrosome loss was stimulated and reached levels similar to those seen in control samples. Therefore, albumin can trigger the acrosome reaction in capacitated spermatozoa. It appears to act by assisting in the removal of a surface-associated inhibitory component, the presence of which stabilizes the sperm membranes and inhibits the acrosome reaction.  相似文献   

16.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

17.
Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction.  相似文献   

18.
Exocytosis of the sperm acrosome is an obligate precursor to successful egg penetration and subsequent fertilization. In most mammals, acrosomal exocytosis occurs at a precise time, after sperm binding to the zona pellucida of the egg, and is induced by a specific component of the zona pellucida. It may be considered an example of regulated secretion with the acrosome of the sperm analogous to a single secretory vesicle. Monomeric G proteins of the rab3 subfamily, specifically rab3a, have been shown to be important regulators of exocytosis in secretory cells, and we hypothesized that these proteins may regulate acrosomal exocytosis. Using α[32P] GTP binding to Immobilon blotted mouse sperm proteins, the presence of three or more monomeric GTP binding proteins was identified with Mr = 22, 24, and 26 × 103. Alpha[32P] GTP binding could be competed by GTP and GDP, but not GMP, ATP, or ADP. Anti‐peptide antibodies specific for rab3a were used to identify the 24 kDa G protein as rab3a. Using immunocytochemistry, rab3a was localized to the head of acrosome‐intact sperm and was lost during acrosomal exocytosis. It was identified in membrane and cytosolic fractions of sperm with the predominant form being membrane‐bound, and its membrane association did not change upon capacitation. Immunogold labeling and electron microscopy demonstrated a subcellular localization in clusters to the periacrosomal membranes and cytoplasm. These data identify the presence of rab3a in acrosomal membranes of mouse sperm and suggest that rab3a plays a role in the regulation of zona pellucida ‐induced acrosomal exocytosis. Mol. Reprod. Dev. 53:413–421, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
Summary Hamster oocyte-cumulus complexes (OCC), with and without sperm, were structurally analyzed by light- and electron microscopy using freeze substitution. This method has yielded a clear picture of the extracellular oocyte investments, the cumulus cell matrix and the zona pellucida. The cumulus matrix has an overall homogeneous fibrillar structure which appears to attach to cumulus cells at their filopodial extensions. The matrix also extends into the outer regions of the zona pellucida. The zona pellucida has a distinct porous configuration throughout its entire structure. During gamete interaction experiments, capacitated hamster sperm with ultrastructurally intact acrosomes were found throughout the matrix. Sperm had dramatic effects on the matrix, resulting in compression and stretching. Sperm found on the zona pellucida had initiated or completed the acrosome reaction. During the initial stages of the acrosome reaction, the matrix was in contact with the sperm. At later stages of the acrosome reaction, there was a complete loss of matrix material in regions near the sperm.  相似文献   

20.
Previous studies have suggested that both acrosome-intact and acrosome-reacted guinea pig sperm are capable of binding to the zona pellucida of cumulus-free oocytes, but the acrosomal status of guinea pig sperm during penetration of the cumulus has not been reported. We made video recordings of the interaction between capacitated guinea pig sperm and cumulus-invested guinea pig oocytes. The videotapes were analysed to identify sperm with hyperactivated motility and to classify the acrosomal status of sperm during penetration of the cumulus and after binding to the zona pellucida. The resolution of the video recordings was not sufficient to recognise sperm with swollen acrosomes. However, sperm that had completed the acrosome reaction were easily identified. Acrosome-reacted sperm were found adherent to the outer boundary of the cumulus, but were never observed to penetrate the cumulus. The percentage of acrosome-intact, hyperactivated sperm was higher in the cumulus oophorus than in culture medium, suggesting that changes in motility were elicited in response to contact with the cumulus. Fully acrosome-reacted sperm were found adherent to the zona pellucida, and solubilised guinea pig zona pellucida was capable of inducing acrosome reactions in capacitated guinea pig sperm. Acrosome-intact sperm were also observed on the zona, but they were not tightly bound and did not have hyperactivated motility, suggesting that these sperm were not functionally capacitated. Our observations demonstrate that guinea pig sperm penetrate the cumulus matrix in an acrosome-intact state. Although we did not observe sperm undergoing the acrosome reaction, our observations and experimental data suggest that the acrosome reaction of guinea pig sperm is completed on or near the surface of the zona pellucida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号