首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of triptolide (TP) on spinal cord injury (SCI), and its underlying mechanism. Following the establishment of the SCI model using YFP H‐line transgenic mice, TP was intraperitoneally injected at a dose of 0.2 mg/kg once daily for 7 days. Behavioral tests, Nissl staining, and hematoxylin–eosin staining were employed to assess motor function recovery and neuronal cell death. Western blot and immunofluorescence staining were used to assess autophagy‐associated proteins (LC3B, p62, Beclin‐1) and the apoptosis‐associated proteins (Bcl‐2, caspase‐3, Bax). The TP‐treated group showed improved motor functions, and reduced neuronal cell death. Also, significant upregulation of Bcl‐2 and LC3B expressions, with the downregulation of p62, Bax and caspase‐3 expressions were found in the TP‐treated group. Additionally, phosphorylation of extracellular signal‐regulated protein kinases 1 and 2 (ERK1 and ERK2) was decreased in the TP‐treated group. TP mediates its protective effect in SCI by promoting the autophagic pathway while inhibiting the MAPK/ERK1/2 signaling pathway. These results demonstrate the therapeutic potential of TP in SCI.  相似文献   

2.
Interferons (IFNs) have anti‐viral and anti‐tumour effects. Type III interferon, as a member of the recently discovered interferon family, has been proved to inhibit tumour proliferation and promote the apoptosis of various tumour cells. However, whether type III IFN could inhibit the proliferation of lung cancer was not clear. In this study, we found that interferon λ (IFN λ) could inhibit the proliferation of A549 cells and induce autophagy and apoptosis of A549 cells. IFN λ could promote the expression of autophagy gene Beclin1 and interfere the expression of autophagy gene Beclin1 with small interfering RNA, thus inhibiting the effect of type III interferon on anti‐proliferation and promoting apoptosis of lung cancer cell. These results suggested that IFN λ could inhibit the proliferation of A549 cells by activating autophagy pathway, and IFN λ might be one of the potential therapeutic drugs for lung cancer.  相似文献   

3.
The traditional Chinese medicine Danshensu (DSS) has a protective effect on cardiac ischaemia/reperfusion (I/R) injury. However, the molecular mechanisms underlying the DSS action remain undefined. We investigated the potential role of DSS in autophagy and apoptosis using cardiac I/R injury models of cardiomyocytes and isolated rat hearts. Cultured neonatal rat cardiomyocytes were subjected to 6 hrs of hypoxia followed by 18 hrs of reoxygenation to induce cell damage. The isolated rat hearts were used to perform global ischaemia for 30 min., followed by 60 min. reperfusion. Ischaemia/reperfusion injury decreased the haemodynamic parameters on cardiac function, damaged cardiomyocytes or even caused cell death. Pre‐treatment of DSS significantly improved cell survival and protected against I/R‐induced deterioration of cardiac function. The improved cell survival upon DSS treatment was associated with activation of mammalian target of rapamycin (mTOR) (as manifested by increased phosphorylation of S6K and S6), which was accompanied with attenuated autophagy flux and decreased expression of autophagy‐ and apoptosis‐related proteins (including p62, LC3‐II, Beclin‐1, Bax, and Caspase‐3) at both protein and mRNA levels. These results suggest that alleviation of cardiac I/R injury by pre‐treatment with DSS may be attributable to inhibiting excessive autophagy and apoptosis through mTOR activation.  相似文献   

4.
Recent investigations have demonstrated a complex interrelationship between autophagy and cell death. A common mechanism of cell death in liver injury is tumor necrosis factor (TNF) cytotoxicity. To better delineate the in vivo function of autophagy in cell death, we examined the role of autophagy in TNF-induced hepatic injury. Atg7Δhep mice with a hepatocyte-specific knockout of the autophagy gene atg7 were generated and cotreated with D-galactosamine (GalN) and lipopolysaccharide (LPS). GalN/LPS-treated Atg7Δhep mice had increased serum alanine aminotransferase levels, histological injury, numbers of TUNEL (terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling)-positive cells and mortality as compared with littermate controls. Loss of hepatocyte autophagy similarly sensitized to GalN/TNF liver injury. GalN/LPS injury in knockout animals did not result from altered production of TNF or other cytokines. Atg7Δhep mice had accelerated activation of the mitochondrial death pathway and caspase-3 and -7 cleavage. Increased cell death did not occur from direct mitochondrial toxicity or a lack of mitophagy, but rather from increased activation of initiator caspase-8 causing Bid cleavage. GalN blocked LPS induction of hepatic autophagy, and increased autophagy from beclin 1 overexpression prevented GalN/LPS injury. Autophagy, therefore, mediates cellular resistance to TNF toxicity in vivo by blocking activation of caspase-8 and the mitochondrial death pathway, suggesting that autophagy is a therapeutic target in TNF-dependent tissue injury.  相似文献   

5.
Sirtuin 6 (SIRT6) has the function of regulating autophagy. The aim of this study was to investigate the mechanism through which SIRT6 relieved acute kidney injury (AKI) caused by sepsis. The AKI model was established with lipopolysaccharides (LPS) using mice. Hematoxylin-eosin (HE) staining and streptavidin-perosidase (SP) staining was used to observe kidney tissue and test SIRT6 and LC3B proteins in kidney. Enzyme-linked immunosorbent assay (ELISA) was performed to detected the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations. Cell counting kit-8 (CCK-8) assay and flow cytometry were carried out to test the cell viability and apoptosis rate respectively. Protein and mRNA were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). AKI induced by LPS had self-repairing ability. At 12 h after modeling, the expression levels of TNF-α, IL-6, SIRT6 and LC3B-II/LC3B-I were first significantly increased and were then significantly decreased at 48 h after modeling. LPS inhibited the growth of HK-2 cells and promoted the expressions of TNF-α, IL-6, SIRT6 and LC3B. Overexpression of SIRT6 down-regulated the secretion of TNF-α and IL-6 induced by LPS. SIRT6 overexpression inhibited apoptosis induced by LPS and promoted autophagy in HK-2 cells. Silencing of the SIRT6 gene not only promoted the secretion of TNF-α and IL-6 by HK-2 cells, but also promoted apoptosis and reduced autophagy. LPS up-regulated the expression of SIRT6 gene in HK-2 cells. Overexpression of the SIRT6 gene could inhibit apoptosis and induce autophagy, which might be involved in repairing kidney damage caused by LPS.  相似文献   

6.
Steroid-induced osteoblast apoptosis is a crucial pathological process in steroid-induced osteonecrosis of the femoral head (SONFH). Autophagy can resist apoptosis and AMPK plays an important role in autophagy regulation. Aucubin from the small tree Eucommia ulmoides Oliv., which has a long history of use in orthopaedics and traumatology in Asian medicine, can promote bone formation, but whether it can slow or prevent steroid-osteoblast apoptosis is unclear. Therefore, we investigated the pathogenesis of SONFH and how the osteoblast responds to aucubin under the dexamethasone stimulation. In human femoral head osteonecrosis specimens, we found that the autophage and apoptosis level were increased, and the AMPK signalling was crucial to autophagy. We observed that aucubin could prevent dexamethasone-induced apoptosis in osteoblasts by enhancing the level of autophagy. Further, we confirmed that the regulatory effect of aucubin on autophagy and apoptosis was achieved by activating AMPK signalling. We have demonstrated a mechanism of disease progression and shown that aucubin could enhance autophagy through AMPK signalling to prevent osteoblast apoptosis. These findings provide a basis for the further investigation of the potential therapeutic role of aucubin in the SONFH.  相似文献   

7.
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications.  相似文献   

8.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal disease associated with aging. However, the molecular mechanisms of the aging process that contribute to the pathogenesis of IPF have not been elucidated. IPF is characterized by abundant foci of highly active fibroblasts and myofibroblasts resistant to apoptosis. Remarkably, the role of aging in the autophagy activity of lung fibroblasts and its relationship with apoptosis, as adaptive responses, has not been evaluated previously in this disease. In the present study, we analyzed the dynamics of autophagy in primary lung fibroblasts from IPF compared to young and age‐matched normal lung fibroblasts. Our results showed that aging contributes for a lower induction of autophagy on basal conditions and under starvation which is mediated by mTOR pathway activation. Treatment with rapamycin and PP242, that target the PI3K/AKT/mTOR signaling pathway, modified starvation‐induced autophagy and apoptosis in IPF fibroblasts. Interestingly, we found a persistent activation of this pathway under starvation that contributes to the apoptosis resistance in IPF fibroblasts. These findings indicate that aging affects adaptive responses to stress decreasing autophagy through activation of mTORC1 in lung fibroblasts. The activation of this pathway also contributes to the resistance to cell death in IPF lung fibroblasts.  相似文献   

9.
Adiponectin, one of the adipose-derived hormone with metabolic activity, has been reported to conversely affect angiogenesis of endothelial cells in vitro. The previous study in animal models has demonstrated that adiponectin has a protective role in retinal vascular injury following pathological stimuli. However, clinical research regarding the relationship between plasma adiponectin level and diabetic retinopathy (DR) are inconclusive. The aim of this study was to investigate the effect of adiponectin on high glucose-induced retinal angiogenesis and its association with autophagy by using rhesus choroid-retinal endothelial (RF-6A) cells as a model. We found that cell vitality decreased and cell migration and tube formation increased in the high-glucose group. Treatment with adiponectin or 3-methyladenine (3-MA, an autophagy inhibitor) increased cell viability and inhibited cell migration and tube formation. In the high-glucose group, the protein expression of Bax and apoptosis rate of cells increased and the expression of Bcl-2 decreased, whereas treatment with adiponectin or 3-MA reversed these results. Autophagy was activated in the high-glucose group to present as more LC3B fluorescent dots and higher expressions of LC3B, Atg5 proteins as well as lower expression of p62. Treatment with adiponectin or 3-MA inhibited autophagy by promoting the expression of p-PI3K, p-AKT, and p-mTOR when compared with the high-glucose group. The results of this study suggested that adiponectin inhibits high glucose-induced angiogenesis of RF/6A cells by inhibiting autophagy, and promotion of the PI3K/AKT/mTOR pathway might be involved in the anti-autophagy activities of adiponectin.  相似文献   

10.
This study aimed to investigate the molecular mechanisms underlying the role of bone marrow mesenchymal stem cells (BMMSCs)-derived exosomes in ischaemia/reperfusion (IR)-induced damage, and the role of oridonin in the treatment of IR. Exosomes were isolated from BMMSCs. Western blot analysis was done to examine the expression of proteins including CD63, CD8, apoptotic-linked gene product 2 interacting protein X (AliX), Beclin-1, ATG13, B-cell lymphoma-2 (Bcl-2), apoptotic peptidase activating factor 1 (Apaf1) and Bcl2-associated X (Bax) in different treatment groups. Accordingly, the expression of CD63, CD81 and AliX was higher in BMMSCs-EXOs and IR + BMMSCs-EXOs + ORI groups compared with that in the BMMSCs group. And BMMSCs-derived exosomes inhibited the progression of IR-induced myocardial damage, while this protective effect was boosted by the pre-treatment with oridonin. Moreover, Beclin-1, ATG13 and Bcl-2 were significantly down-regulated while Apaf1 and Bax were significantly up-regulated in IR rats. And the presence of BMMSCs-derived exosomes partly alleviated IR-induced dysregulation of these proteins, while the oridonin pre-treatment boosted the effect of these BMMSCs-derived exosomes. The inhibited proliferation and promoted apoptosis of H9c2 cells induced by hypoxia/reperfusion (HR) were mitigated by the administration of BMMSCs-derived exosomes. Meanwhile, HR also induced down-regulation of Beclin-1, ATG13 and Bcl-2 expression and up-regulation of Apaf1 and Bax, which were mitigated by the administration of BMMSCs-derived exosomes. And oridonin pre-treatment boosted the effect of BMMSCs-derived exosomes. In conclusion, our results validated that BMMSCs-derived exosomes suppressed the IR-induced damages by participating in the autophagy process, while the pre-treatment with oridonin could boost the protective effect of BMMSCs-derived exosomes.  相似文献   

11.
MicroRNAs and autophagy play critical roles in cardiac hypoxia/reoxygenation (H/R)‐induced injury. Here, we investigated the function of miR‐21 in regulating autophagy and identified the potential molecular mechanisms involved. To determine the role of miR‐21 in regulating autophagy, H9c2 cells were divided into the following six groups: control group, H/R group, (miR‐21+ H/R) group, (miR‐21‐negative control + H/R) group, (BEZ235+ H/R) group and (miR‐21+ BEZ235+ H/R) group. The cells underwent hypoxia for 1 hr and reoxygenation for 3 hrs. Cell count kit‐8 was used to evaluate cell function and apoptosis was analysed by Western blotting. Western blotting and transmission electron microscopy were used to investigate autophagy. We found that miR‐21 expression was down‐regulated, and autophagy was remarkably increased in H9c2 cells during H/R injury. Overexpression of miR‐21 with a miR‐21 precursor significantly inhibited autophagic activity and decreased apoptosis, accompanied by the activation of the AKT/mTOR pathway. In addition, treatment with BEZ235, a novel dual Akt/mTOR inhibitor, resulted in a significant increase in autophagy and apoptosis. However, we found that miR‐21‐mediated inhibition of apoptosis and autophagy was partly independent of Akt/mTOR activation, as demonstrated in cells treated with both miR‐21 and BEZ235. We showed that miR‐21 could inhibit H/R‐induced autophagy and apoptosis, which may be at least partially mediated by the Akt/mTOR signalling pathway.  相似文献   

12.
13.
14.
呼吸道合胞病毒感染与细胞凋亡、自噬的关系错综复杂。研究发现呼吸道合胞病毒感染细胞后,既能产生促细胞凋亡作用,也能产生抗细胞凋亡作用,还能诱导细胞发生自噬。研究这些过程机理,能帮助我们更好地认识呼吸道合胞病毒感染发病机制,为预防和治疗呼吸道合胞病毒感染提供一些新的方向。  相似文献   

15.
Liver X receptors (LXRs) has been emerged as negative regulators of cardiomyocytic inflammation. The cellular process of autophagy is believed to play a protective role in myocardium during the inflammatory status. In this study, we investigated the role of LXRs agonist TO901317 (TO) on lipopolysaccharides (LPS)-induced myocardial inflammation and autophagy. The results showed that TO pretreatment significantly reduced the LPS-induced infiltration of inflammatory cells, elevation of NF-κB protein, TNF-α, and IL-6 mRNA levels in the myocardium. Moreover, LPS stimulated autophagy in neonatal mice heart, and this effect was further enhanced by TO pretreatment as evidenced by increased LC3-II/GAPDH ratio increment. Furthermore, TUNEL assay revealed LPS stimulation also increased the number of apoptotic cells in the myocardium, and the increment was inhibited by TO pretreatment. Our findings suggested that attenuation of inflammation and apoptosis, and enhancement of autophagy by TO may contribute to the protection of myocardium under inflammatory condition.  相似文献   

16.
Diabetes mellitus (DM) is one of the prominent risk factors for pathological development and progression of tendinopathy. One feature of DM‐related changes in tendinopathy is accumulation of advanced glycation end products (AGEs) in affected tendons. Pioglitazone (Pio), a peroxisome proliferator‐activated receptor γ agonist, performs a protective effect against AGEs. The present study aimed to investigate the pathogenetic role of AGEs on tendon‐derived stem cells (TDSCs) and to determine the effect of Pio on AGEs‐induced TDSC dysfunctions. Results indicated that AGEs induced TDSC apoptosis as well as compensatory activation of autophagy. Pharmacologic activation/inhibition of autophagy leaded to alleviate/exacerbate apoptosis induced by AGEs. We further confirmed the effect of Pio on autophagy, which ameliorated apoptosis and abnormal calcification caused by AGEs both in vitro and in vivo. Thus, we suggest that Pio ameliorates the dysfunctions of TDSCs against AGEs by promoting autophagy, and we also reveal that Pio is a potential pharmacological choice for tendinopathy.  相似文献   

17.
18.
Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in human non-small cell lung cancer (NSCLC) cells. Furthermore, we demonstrated that salinomycin stimulated endoplasmic reticulum stress and mediated autophagy via the ATF4-DDIT3/CHOP-TRIB3-AKT1-MTOR axis. Moreover, we found that the autophagy induced by salinomycin played a prosurvival role in human NSCLC cells and attenuated the apoptotic cascade. We also showed that salinomycin triggered more apoptosis and less autophagy in A549 cells in which CDH1 expression was inhibited, suggesting that the inhibition of autophagy might represent a promising strategy to target cancer stem cells. In conclusion, these findings provide evidence that combination treatment with salinomycin and pharmacological autophagy inhibitors will be an effective therapeutic strategy for eliminating cancer cells as well as cancer stem cells.  相似文献   

19.
目的:探讨过氧化氢(H2O2)诱导神经胶质瘤U251细胞损伤中自噬和凋亡发生的时间顺序。方法:实验分为4组:正常对照组、1mmol/L H2O2作用(6h、12h、24h)组。应用MTF法检测H202对神经胶质瘤U251细胞生存率的影响;MDC染色检测自噬空泡的变化;流式细胞仪检测细胞凋亡率变化。Western blot检测Beclin1和胞浆cyt c蛋白的表达。结果:与对照组相比,1mmol/L H2O2作用下,U251细胞存活率明显降低,并呈时间依赖性。与对照组相比,1mmol/L H2O2作用后,6h时U251细胞自噬空泡明显增加,自噬相关蛋白Beclin1表达明显增加,12h、24h细胞自噬水平逐渐增强;而6h时未见细胞凋亡率明显变化及cyt c由线粒体向胞浆的释放,12h、24h时细胞凋亡率明显增加,胞浆中cyt c蛋白表达明显增强(P〈0.05)。结论:氧化损伤能够诱导神经胶质瘤U251细胞发生自噬和凋亡,并且自噬发生于凋亡之前。  相似文献   

20.
目的:探讨自噬抑制刺氯喹(cQ)在低氧(hypoxia)调节肺动脉平滑肌细胞(PASMCs)增殖中的作用。方法:将体外培养的大鼠PASMCs分为4组:正常对照组、1%低氧组、50μmol/L氯喹+1%低氧组、50ttmol/L氯喹组。MTF方法检测各组的PASMCs增殖率;MDC染色检测细胞自噬空泡的变化;Westernblot方法检测微管相关蛋白轻链3(LC3)蛋白的表达变化;划痕法检测细胞迁移的变化。结果:与对照组比较,氯喹组的PASMCs细胞增殖率无明显变化。与对照组比较,1%低氧组PASMCs增殖率明显增加,细胞内出现大量自噬空泡,细胞迁移速度明显增加。细胞LC3-Ⅱ蛋白表达增强。与1%低氧组比较,氯喹与低氧联合作用时细胞自噬空泡的积聚以及rE3.II蛋白表达增强,但细胞增殖率和迁移明显降低。结论:低氧激活自噬过程并促进了PASMCs增殖和迁移,而自噬抑制剂氯喹在一定程度上通过抑制自噬进程,达到抑制肺动脉平滑肌细胞增殖和迁移的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号