首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In canids, resident breeders hold territories but require different resources than transient individuals (i.e., dispersers), which may result in differential use of space, land cover, and food by residents and transients. In the southeastern United States, coyote (Canis latrans) reproduction occurs during spring and is energetically demanding for residents, but transients do not reproduce and therefore can exhibit feeding behaviors with lower energetic rewards. Hence, how coyotes behave in their environment likely differs between resident and transient coyotes. We captured and monitored 36 coyotes in Georgia during 2018–2019 and used data from 11 resident breeders, 12 predispersing residents (i.e., offspring of resident breeders), and 11 transients to determine space use, movements, and relationships between these behaviors and landcover characteristics. Average home range size for resident breeders and predispersing offspring was 20.7 ± 2.5 km² and 50.7 ± 10.0 km², respectively. Average size of transient ranges was 241.4 ± 114.5 km². Daily distance moved was 6.3 ± 3.0 km for resident males, 5.5 ± 2.7 km for resident females, and 6.9 ± 4.2 km for transients. We estimated first‐passage time values to assess the scale at which coyotes respond to their environment, and used behavioral change‐point analysis to determine that coyotes exhibited three behavioral states. We found notable differences between resident and transient coyotes in regard to how landcover characteristics influenced their behavioral states. Resident coyotes tended to select for areas with denser vegetation while resting and foraging, but for areas with less dense vegetation and canopy cover when walking. Transient coyotes selected areas closer to roads and with lower canopy cover while resting, but for areas farther from roads when foraging and walking. Our findings suggest that behaviors of both resident and transient coyotes are influenced by varying landcover characteristics, which could have implications for prey.  相似文献   

2.
Coyote (Canis latrans) spatial and social ecology are variable, but have been little studied in high-elevation environments. In these temperate ecosystems, large ungulates are prevalent and coyote pack size may be large in order for them to scavenge and defend ungulate carcasses from conspecifics in neighboring packs. We initiated a study to understand the spatial and social ecology of coyotes on the Valles Caldera National Preserve, a high-elevation (2450–3400 m) protected area in northern New Mexico. Our objectives were to (1) describe the home range size and habitat use of coyotes in the preserve, (2) describe coyote movements within and outside of packs, and (3) to evaluate the relationship between coyote social cohesion and the amount of elk (Cervus elaphus) in the coyote diet. We acquired global positioning system and telemetry locations from 33 coyotes from August 2005 to July 2009. We classified 23 coyotes (70 % of individuals) as residents (i.e., territorial) during at least part of the study and ten coyotes (30 %) as transients. Overall mean home range size of resident packs was 10.6 ± 2.2 (SD) km2. Home range size varied between packs, but did not vary by season or year. Coyotes used dry and wet meadow habitats as expected based on availability; coyotes used riparian habitat more than expected, and forests less than expected. Social cohesion did not vary among biological seasons. Alpha coyotes were more socially cohesive with each other than with other pack members, and a transient exhibited temporal–spatial avoidance of pack members while inside the pack’s territory followed by integration into the pack. Contrary to expectations, we found no relationship between coyote social cohesion and the proportion of elk in coyote diets. We concluded that coyote space use and sociality on the preserve were relatively stable year-round despite changes in biological needs, snow depth, and utilization of variously sized prey.  相似文献   

3.
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.  相似文献   

4.
Coyotes (Canis latrans) may affect adult and neonate white-tailed deer (Odocoileus virginianus) survival and have been implicated as a contributor to the decline of deer populations. Additionally, coyote diet composition is influenced by prey availability, season, and region. Because coyote movement and diet vary by region, local data are important to understand coyote population dynamics and their impact on prey species. In southeast Minnesota, we investigated the effect of coyotes on white-tailed deer populations by documenting movement rates, distances moved, and habitats searched by coyotes during fawning and nonfawning periods. Additionally, we determined survival, cause-specific mortality, and seasonal diet composition of coyotes. From 2001 to 2003, we captured and radiocollared 30 coyotes. Per-hour rate of movement averaged 0.87 km and was greater (P = 0.046) during the fawning (1.07 km) than the nonfawning period (0.80 km); areas searched were similar (P = 0.175) between seasons. Coyote habitat use differed during both seasons; habitats were not used in proportion to their availability (P < 0.001). Croplands were used more (P < 0.001) than their proportional availability during both seasons. Use of grasslands was greater during the fawning period (P = 0.030), whereas use of cropland was greater in the nonfawning period (P < 0.001). We collected 66 fecal samples during the nonfawning period; coyote diets were primarily composed of Microtus spp. (65.2%), and consumption of deer was 9.1%. During the study, 19 coyotes died; annual survival rate range was 0.33–0.41, which was low compared with other studies. Consumption of deer was low and coyotes searched open areas (i.e., cropland) more than fawning areas with dense cover. These factors in addition to high coyote mortality suggested that coyote predation was not likely limiting white-tailed deer populations in southeast Minnesota. © 2011 The Wildlife Society.  相似文献   

5.
Sterilization of wild canids is being used experimentally in many management applications. Few studies have clearly demonstrated vasectomized and tubal-ligated canids will retain pair-bonding and territorial behaviors. We tested whether territory fidelity, space use, and survival rates of surgically sterilized coyote (Canis latrans) packs were different from sham-operated coyote packs. We captured and radio-collared 30 coyotes in December 2006. Sixteen of these animals were sterilized via vasectomy or tubal ligation, and 14 were given sham-surgeries (i.e., remained intact). We monitored these animals using telemetry and visual observations through 2 breeding seasons and 1 pup-rearing season from December 2006 to March 2008. Mean pack size was not significantly different between sterile and intact coyote packs. We found no difference in home range size between sterile and intact coyotes. We found differences in home range and core area overlap between sterile and intact coyote packs in some seasons; however, this difference may have existed prior to sterilization. Home range fidelity was not significantly different between sterile and intact coyotes. All coyotes had higher residency rates during the breeding season, with no differences between sterile and intact coyotes. Survival rates were correlated with biological season, but there were no differences in survival rates between sterile and intact coyotes. We concluded that surgical sterilization of coyotes did not affect territory fidelity, survival rates, or home range maintenance.  相似文献   

6.
In the last century, coyotes (Canis latrans) have expanded their range geographically, but have also expanded their use of habitats within currently occupied regions. Because coyotes are not morphologically adapted for travel in deep snow, we studied coyote space use patterns in a deep-snow landscape to examine behavioral adaptations enabling them to use high elevations during winter. We examined the influence of snow depth, snow penetrability, canopy cover, and habitat type, as well as the rates of prey and predator track encounters, on coyote travel distance in high-elevation terrain in northwestern Wyoming, USA. We backtracked 13 radio-collared coyotes for 265.41 km during the winters of 2006–2007 and 2007–2008, and compared habitat use and movement patterns of the actual coyotes with 259.11 km of random travel paths. Coyotes used specific habitats differently than were available on the landscape. Open woodlands were used for the majority of coyote travel distance, followed by mixed conifer, and closed-stand spruce–fir. Prey track encounters peaked in closed-stand, mature Douglas fir, followed by 50- to 150-year-old lodgepole pine stands, and 0- to 40-year-old regeneration lodgepole pine stands. Snowmobile trails had the most variation between use and availability on the landscape (12.0 % use vs. 0.6 % available). Coyotes increased use of habitats with dense canopy cover as snow penetration increased and rates of rodent and red squirrel track encounters increased. Additionally, coyotes spent more time in habitats containing more tracks of ungulates. Conversely, use of habitats with less canopy cover decreased as snow depth increased, and coyotes traveled more directly in habitats with less canopy cover and lower snow penetration, suggesting coyotes used these habitats to travel. Coyotes persisted throughout the winter and effectively used resources despite deep snow conditions in a high-elevation environment.  相似文献   

7.
We used scat analysis and radiotelemetry to characterize use of foods and habitats by sympatric bobcats and coyotes, and evaluated these in the context of spatial and temporal relationships to assess the potential for, and evidence of, interspecific competition. Bobcats and coyotes exhibited broad and overlapping diets. However, diets of the two predators differed in the relative contributions of small and large prey, with bobcats consuming relatively more rodent and lagomorph biomass and coyotes consuming relatively more ungulate biomass. Consumption among rodent prey species was highly correlated between bobcats and coyotes, indicating no evidence of prey partitioning within this group. Habitat selection by the two predators differed slightly at the landscape scale but not within home ranges. Bobcats and coyotes occupied small, overlapping home ranges, such that the likelihood of interspecific encounters (direct or indirect) was high. Bobcats displayed slight avoidance of overlapping coyote core areas during coyote reproductive seasons (winter and spring), when coyotes are typically most territorial (toward conspecifics), but displayed slight attraction during times of year when coyotes were not engaged in reproductive activities. Relative to coyotes, which were strongly nocturnal, diel activity patterns of bobcats were more diurnal and variable. However, activity patterns were not inversely correlated. Overall, these predators appeared to use resources independently and we found little evidence of negative interactions. Differences in resource use by bobcats and coyotes appeared to relate to fundamental niche differences as opposed to competition-related resource partitioning.  相似文献   

8.
Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote movements within an area containing lynx and designated lynx habitat.  相似文献   

9.
Measuring wildlife responses to anthropogenic activities often requires long‐term, large‐scale datasets that are difficult to collect. This is particularly true for rare or cryptic species, which includes many mammalian carnivores. Citizen science, in which members of the public participate in scientific work, can facilitate collection of large datasets while increasing public awareness of wildlife research and conservation. Hunters provide unique benefits for citizen science given their knowledge and interest in outdoor activities. We examined how anthropogenic changes to land cover impacted relative abundance of two sympatric canids, coyote (Canis latrans), and red fox (Vulpes vulpes) at a large spatial scale. In order to assess how land cover affected canids at this scale, we used citizen science data from bow hunter sighting logs collected throughout New York State, USA, during 2004–2017. We found that the two species had contrasting responses to development, with red foxes positively correlated and coyotes negatively correlated with the percentage of low‐density development. Red foxes also responded positively to agriculture, but less so when agricultural habitat was fragmented. Agriculture provides food and denning resources for red foxes, whereas coyotes may select forested areas for denning. Though coyotes and red foxes compete in areas of sympatry, we did not find a relationship between species abundance, likely a consequence of the coarse spatial resolution used. Red foxes may be able to coexist with coyotes by altering their diets and habitat use, or by maintaining territories in small areas between coyote territories. Our study shows the value of citizen science, and particularly hunters, in collection of long‐term data across large areas (i.e., the entire state of New York) that otherwise would unlikely be obtained.  相似文献   

10.
Daytime behavioural budgets of coyotes (Canis latrans) living in the Grand Teton National Park, Jackson, Wyoming, were analysed in order to determine how activity patterns were influenced by food resources and social organization. In winter, coyotes rested more and hunted less than in other seasons. Pack-living coyotes rested more and travelled less than resident pairs or solitary residents or transients during winter months when the major food resource was ungulate (predominantly elk, Cervus canadensis) carrion. A mated female living in a pack rested significantly more and travelled significantly less than a mated female living only with her mate (as a resident pair) during winter. We predict that in times of food shortage, pack-living coyotes, and particularly reproductive females, might be at an advantage when compared to resident pairs and solitary individuals.  相似文献   

11.
The establishment of coyote (Canis latrans) populations in urban areas across North America has been accompanied by increased rates of human–coyote conflict. One factor thought to promote physical conflict between coyotes and people or pets is the presence of coyote pups near natal dens; however, this idea has not been tested, and no multivariate study of den selection within cities has occurred. Our objectives were to conduct a multivariate analysis of third- (i.e., home range) and fourth-order (i.e., den sites) habitat selection at dens and determine whether proximity to dens is associated with reports of physical conflict with coyotes. We found 120 dens by following coyote trails using snow tracking within urban green spaces that comprise presumed high-quality habitat for coyotes in Edmonton, Alberta, Canada. We used resource selection functions to assess habitat selection for dens, testing variables related to land cover and anthropogenic features at the third order, and testing microsite habitat features via paired sites at the fourth order. We defined conflict encounters from comments in a community reporting database and used general linear models to assess their spatial proximity to the nearest den and prevalence during the pup-rearing period compared to the rest of the year. Habitat selection was strongest at the fourth order, wherein coyotes selected for abundant hiding cover, steep slopes, and eastern exposure. The prevalence of physical conflict with coyotes increased during the pup-rearing period. Conflict also increased near known dens as an overall effect and when reports occurred outside of naturalized urban areas. These results suggest that coyotes in Edmonton den in green spaces near human development in microsites that minimize detection by people via steep slopes and dense vegetation. We suggest urban wildlife managers increase public safety education about recognition of coyote denning habitat and coyote defensive behaviors, especially outside of naturalized urban areas, because of the observed increase in physical conflict near dens.  相似文献   

12.
A recent region-wide study determined that the central California coyote (Canis latrans) population was genetically subdivided according to habitat bioregions, supporting the hypothesis that coyotes exhibit a dispersal bias toward their natal habitat type. Here, we further investigated this hypothesis using radio-collared coyotes captured on a 150-km(2) study site on the border of (i.e. overlapping) two bioregions (Great Valley and Cascade Mountains). As predicted, most coyotes were assigned (based on a priori genetic criteria) to genetic clusters corresponding to one of these two bioregions. All of those assigned to the Great Valley genetic cluster were caught in (and for the most part, remained in) the Great Valley bioregion. However, contrary to expectations, the coyotes assigned to the Cascades genetic cluster occurred commonly in both bioregions. Nearly all resident individuals on the study site, regardless of the particular bioregion, were assigned to the Cascades genetic cluster, whereas a sizable fraction of nonresident (transient or dispersing) coyotes caught in the Great Valley bioregion were assigned to the Great Valley cluster. Even among resident coyotes, interrelatedness of packs was greater within than between bioregions, and packs with territories overlapping both bioregions were more closely related to those with territories completely within the Cascades bioregion than territories completely within the Great Valley bioregion. Finally, direct estimates indicated that gene flow was twice as high from the Cascades bioregion to the Great Valley bioregion than in the reverse direction. Collectively, these findings reveal the anatomy of the genetic subdivision as beginning abruptly at the bioregion boundary and ending diffusely within the Great Valley bioregion.  相似文献   

13.
Abstract: Coyotes (Canis latrans) and Canada lynx (Lynx canadensis) are sympatric throughout much of the lynx's southern range. Researchers and managers have suggested that the presence of compacted snowmobile trails may allow coyotes to access lynx habitat from which they were previously excluded by deep, unconsolidated snow. This could then allow coyotes to more effectively compete with lynx for snowshoe hares (Lepus americanus), the lynx's primary prey. We investigated how coyotes interacted with compacted snowmobile trails by conducting carnivore track surveys and by snow tracking adult coyotes (4 M, 8 F) in areas of western Montana, USA, with both documented lynx presence and recreational snowmobile use. Coyotes remained in lynx habitat having deep snow throughout the winter months. They used compacted snowmobile trails for 7.69% of their travel distance and traveled on them for a median distance of 124 m. Coyotes used compacted forest roads (5.66% of total travel) and uncompacted forest roads (4.62% of total travel) similarly. Coyotes did not travel closer to compacted snowmobile trails than random expectation (coyote x̄ distance from compacted trails = 368 m, random expectation = 339 m) and the distance they traveled from these trails did not vary with daily, monthly, or yearly changes in snow supportiveness or depth. However, they strongly selected for naturally shallower and more supportive snow surfaces when traveling off compacted snowmobile trails. Coyotes were primarily scavengers in winter (snowshoe hare kills composed 3% of coyote feed sites) and did not forage closer to compacted snowmobile trails than random expectation. The overall influence of snowmobile trails on coyote movements and foraging success during winter appeared to be minimal on our study area. The results of this study will allow land managers to better assess the effects of snow-compacting activities on coyotes and lynx.  相似文献   

14.
  1. The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.
  2. We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra‐ and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).
  3. We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010–2019.
  4. Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.
  5. Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.
  相似文献   

15.
ABSTRACT Interactions between wolves (Canis lupus) and coyotes (C. latrans) can have significant impacts on their distribution and abundance. We compared diets of recently translocated Mexican wolves (C. l. baileyi) with diets of resident coyotes in Arizona and New Mexico, USA. We systematically collected scats during 2000 and 2001. Coyote diet was composed mostly of mammalian species, followed by vegetation and insects. Elk (Cervus elaphus) was the most common item in coyote scats. Mexican wolf diet had a higher proportion of large mammals and fewer small mammals than coyote diet; however, elk was also the most common food item in Mexican wolf scats. Our results suggest that Mexican wolf diet was more similar to coyote diet than previously reported, but coyotes had more seasonal variation. Considering results in other areas, we expect that Mexican wolves will have a negative impact on coyotes through direct mortality and possibly competition. Reintroduction of Mexican wolves may have great impacts on communities by changing relationships among other predators and their prey.  相似文献   

16.
Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white‐tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white‐tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white‐tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population‐level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86–0.92), diet (B = 3.1–4.9; α = 0.76–1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population‐level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population‐level plasticity in resource use.  相似文献   

17.
Radio-collared coyotes (Canis latrans) were relocated every 15 min during continuous 24-h sampling periods. The data were used to estimate patterns of home-range use by coyotes. Utilization of the the home range was found to vary spatially and behaviourally. Spatial use was determined by relative amounts of time coyotes spent and amounts of distance they travelled within each are of their home ranges. Behavioural use was based on identification of three types of movement patterns that werew postulated to represent three general kinds of behaviour: (1) resting behaviour, (2) hunting or investigative behavour, and (3) ranging or traveling behaviour. Spatial and behavioural uses of the home range area were found to be interrelated; core areas in which animals spent most of their time were also used primarily for resting or hunting. In areas in which animals spent little time, coyotes exhibited primarily ranging behaviour. Use patterns were postulated to be the result of coyotes' selection of areas due to unique vegetal, faunal, or physiogfaphic characteristics. Temporal variatrions in home-range use were found and were postulated to result from seasonal and diel changes in coyote behaviour due to the annual reproductive cycle, the seasonal and diel cycle of temperature, possible cycles in prey behaviour.  相似文献   

18.
ABSTRACT Sheep predation by coyotes (Canis latrans) is a major problem for sheep producers in North America. Solutions are facilitated by a basic understanding of the trophic dynamic context of this problem, one that likely varies geographically in important qualitative ways. Little is known about vertebrate trophic dynamics in Mediterranean ecosystems, where prey are diverse and their biomass is strongly influenced multi-annually by variable rainfall. We used long-term data sets from north-coastal California, USA, to investigate whether wild prey fluctuations caused immediate negative effects on sheep predation via a reduction in the coyote functional response or delayed positive effects on sheep predation via a numerical response by coyote predators. Because we could not measure prey biomass directly, we used variables associated with lower trophic levels (e.g., annual plant productivity, vole abundance, rainfall) as proxies for wild prey biomass. Coyote population growth rate was positively correlated with lower-trophic-level variables of the previous year, suggesting a numerical response, and sheep (ad F + lambs) predation was positively correlated with coyote abundance in the current year. Sheep predation also was negatively correlated with lower-trophic-level variables of the current year, suggesting an immediate buffering effect of wild prey on sheep predation. Together, coyote abundance and lower-trophic-level variables explained 47% of the multi-annual variation in sheep kills. The negative pathway between lower-trophic-level variables and sheep predation was stronger than the positive pathway, possibly due to the erratic nature of multi-annual fluctuations in lower-trophic-level variables, which could prevent the numerical response from reaching its full potential. Monthly analyses revealed a type III functional response of coyotes to lambs, which is expected to enhance buffering effects of wild prey on sheep predation. Our findings suggest the dominant effect of wild prey biomass on sheep predation by coyotes in this Mediterranean-type community is as a buffer.  相似文献   

19.
Abstract: We studied the effects of coyote (Canis latrans) control for livestock protection on native ungulates during 2003 and 2004 on 7 sites in Utah and Colorado, USA, totaling over 1,900 km2. We found no relationships between coyote control variables and offspring/female deer ratios. However, control effort (no. of hr spent aerial gunning for coyotes) and success (no. of coyotes taken) were positively correlated with numbers of mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) observed per kilometer of transect. Our results suggest that coyote control for livestock protection may increase densities of mule deer and pronghorn in areas where it is conducted.  相似文献   

20.
We tested the hypothesis that predation by coyotes (Canis latrans) impacts pronghorn (Antilocapra americana) and mule deer (Odocoileus hemionus) populations. We did so by examining the effects of coyote removal on pronghorn and mule deer populations within 12 large areas (>10,500 km2) located in Wyoming and Utah during 2007 and 2008. Pronghorn productivity (fawn to adult female ratio) and abundance were positively correlated with the number of coyotes removed and removal effort (hours spent hunting coyotes from aircraft) although the correlation between pronghorn productivity and removal effort was not statistically significant (P = 0.08). Mule deer productivity and abundance were not correlated with either the number of coyotes removed or removal effort. Coyote removal conducted during the winter and spring provided greater benefit than removals conducted during the prior fall or summer. Our results suggest that coyote removal conducted over large areas increases fawn survival and abundance of pronghorn but not mule deer. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号