首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There are two major pathways leading to induction of NF-κB subunits. The classical (or canonical) pathway typically leads to the induction of RelA or c-Rel containing complexes, and involves the degradation of IκBα in a manner dependent on IκB kinase (IKK) β and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible processing of p100 to p52, leading to the induction of NF-κB2(p52)/RelB containing complexes, and is dependent on IKKα and NF-κB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-κB pathway subunits NF-κB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western blot analyses and chromatin immunoprecipitation (ChIP) show that NF-κB2 regulates the expression of CDK4 and CDK6, while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-κB target gene. Microarray analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk between the alternative NF-κB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we find that activation of NF-κB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-κB can inhibit tumor suppressor function and promote tumorigenesis.  相似文献   

3.
4.
5.
6.
7.
Bladder cancer is the most common malignant urological disease in China. Hydroxycamptothecin (HCPT) is a DNA topoisomerase I inhibitor, which has been utilized in chemotherapy for bladder cancer for nearly 40 years. Previous research has demonstrated that the isoflavone, genistein, can sensitize multiple cancer cell lines to HCPT treatment, such as prostate and cervical cancer. In this study, we investigated whether genistein could sensitize bladder cancer cell lines and bladder epithelial cell BDEC cells to HCPT treatment, and investigated the possible underlying molecular mechanisms. Genistein could significantly and dose-dependently sensitize multiple bladder cancer cell lines and BDEC cells to HCPT-induced apoptosis both in vitro and in vivo. Genistein and HCPT synergistically inhibited bladder cell growth and proliferation, and induced G2/M phase cell cycle arrest and apoptosis in TCCSUP bladder cancer cell and BDEC cell. Pretreatment with genistein sensitized BDEC and bladder cancer cell lines to HCPT-induced DNA damage by the synergistic activation of ataxia telangiectasia mutated (ATM) kinase. Genistein significantly attenuated the ability of HCPT to induce activation of the anti-apoptotic NF-κB pathway both in vitro and in vivo in a bladder cancer xenograft model, and thus counteracted the anti-apoptotic effect of the NF-κB pathway. This study indicates that genistein could act as a promising non-toxic agent to improve efficacy of HCPT bladder cancer chemotherapy.  相似文献   

8.
A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.  相似文献   

9.
Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.  相似文献   

10.
11.
12.
Activation of inflammation by lipopolysaccharide (LPS) is an important innate immune response. Here we investigated the contribution of caspases to the LPS-mediated inflammatory response and discovered distinctive temporal roles of RIPK1 in mediating proinflammatory cytokine production when caspases are inhibited. We propose a biphasic model that differentiates the role of RIPK1 in early versus late phase. The early production of proinflammation cytokines stimulated by LPS with caspase inhibition is mediated by the NF-κB pathway that requires the scaffold function of RIPK1 but is kinase independent. Autocrine production of TNFα in the late phase promotes the formation of a novel TNFR1-associated complex with activated RIPK1, FADD, caspase-8, and key mediators of NF-κB signaling. The production of proinflammatory cytokines in the late phase can be blocked by RIPK1 kinase inhibitor Nec-1s. Our study demonstrates a mechanism by which the activation of RIPK1 promotes its own scaffold function to regulate the NF-κB–mediated proinflammatory cytokine production that is negatively regulated by caspases to restrain inflammatory signaling.  相似文献   

13.
14.
Homologous recombination (HR) serves multiple roles in DNA repair that are essential for maintaining genomic stability, including double-strand DNA break (DSB) repair. The central HR protein, RAD51, is frequently overexpressed in human malignancies, thereby elevating HR proficiency and promoting resistance to DNA-damaging therapies. Here, we find that the non-canonical NF-κB factors p100/52, but not RelB, control the expression of RAD51 in various human cancer subtypes. While p100/p52 depletion inhibits HR function in human tumor cells, it does not significantly influence the proficiency of non-homologous end joining, the other key mechanism of DSB repair. Clonogenic survival assays were performed using a pair DLD-1 cell lines that differ only in their expression of the key HR protein BRCA2. Targeted silencing of p100/p52 sensitizes the HR-competent cells to camptothecin, while sensitization is absent in HR-deficient control cells. These results suggest that p100/p52-dependent signaling specifically controls HR activity in cancer cells. Since non-canonical NF-κB signaling is known to be activated after various forms of genomic crisis, compensatory HR upregulation may represent a natural consequence of DNA damage. We propose that p100/p52-dependent signaling represents a promising oncologic target in combination with DNA-damaging treatments.  相似文献   

15.
16.
Hyperglycemia and inflammation are hallmarks of burn injury. In this study, we used a rat model of hyperglycemia and burn injury to investigate the effects of hyperglycemia on inflammatory responses in the liver. Hyperglycemia was induced in male Sprague-Dawley rats with streptozotocin (STZ) (35–40 mg/kg), followed by a 60% third-degree scald burn injury. Cytokine levels (by multiplex, in cytosolic liver extracts), hormones (by enzyme-linked immunosorbent assay [ELISA], in serum), nuclear factor (NF)-κB protein deoxyribonucleic acid (DNA) binding (by ELISA, in nuclear liver extracts) and liver functional panel (using VetScan, in serum) were measured at different time points up to 7 d after burn injury. Blood glucose significantly increased after burn injury in both groups with different temporal patterns. Hyperglycemic rats were capable of endogenous insulin secretion, which was enhanced significantly versus controls 12 h after burn injury. DNA binding data of liver nuclear extracts showed a robust and significant activation of the noncanonical NF-κB pathway in the hyperglycemic versus control burn animals, including increased NF-κB–inducing kinase expression (p < 0.05). Liver acute-phase proteins and cytokine expression were increased, whereas secretion of constitutive proteins was decreased after burn injury in hyperglycemic versus control animals (p < 0.05). These results indicate that burn injury to the skin rapidly activated canonical and noncanonical NF-κB pathways in the liver. Robust activation of the NF-κB noncanonical pathway was associated with increased expression of inflammatory markers and acute-phase proteins, and impaired glucose metabolism. Hyperglycemia is detrimental to burn outcome by augmenting inflammation mediated by hepatic noncanonical NF-κB pathway activation.  相似文献   

17.
18.
K-Ras dependent non-small cell lung cancer (NSCLC) cells are ‘addicted’ to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC.  相似文献   

19.
20.

Background

Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated.

Methodology

Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay.

Principal Findings

Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions–Bcl-2, XIAP–and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues.

Conclusions

NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号