首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bukhov NG  Heber U  Wiese C  Shuvalov VA 《Planta》2001,212(5-6):749-758
Dissipation of light energy was studied in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst., and in leaves of Spinacia oleracea L. and Arabidopsis thaliana (L.) Heynh., using chlorophyll fluorescence as an indicator reaction. Maximum chlorophyll fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated spinach leaves, as produced by saturating light and studied between +5 and −20 °C, revealed an activation energy ΔE of 0.11 eV. As this suggested recombination fluorescence produced by charge recombination between the oxidized primary donor of photosystem II and reduced pheophytin, a mathematical model explaining fluorescence, and based in part on known characteristics of primary electron-transport reactions, was developed. The model permitted analysis of different modes of fluorescence quenching, two localized in the reaction center of photosystem II and one in the light-harvesting system of the antenna complexes. It predicted differences in the relationship between quenching of variable fluorescence F v and quenching of basal, so-called F 0 fluorescence depending on whether quenching originated from antenna complexes or from reaction centers. Such differences were found experimentally, suggesting antenna quenching as the predominant mechanism of dissipation of light energy in the moss Rhytidiadelphus, whereas reaction-center quenching appeared to be important in spinach and Arabidopsis. Both reaction-center and antenna quenching required activation by thylakoid protonation but only antenna quenching depended on or was strongly enhanced by zeaxanthin. De-protonation permitted relaxation of this quenching with half-times below 1 min. More slowly reversible quenching, tentatively identified as so-called q I or photoinhibitory quenching, required protonation but persisted for prolonged times after de-protonation. It appeared to originate in reaction centers. Received: 8 April 2000 / Accepted: 31 August 2000  相似文献   

2.
Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [15N-1H]- and [13C-1H]-methyl-TROSY NMR spectra with a 52?kDa membrane protein that putatively has 12 transmembrane-spanning α-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48?h at a temperature of 25?°C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan 15N backbone positions and also resolved signals for 15N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [13C-1H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex α-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.  相似文献   

3.
This paper proposes a model which correlates the exciton decay kinetics observed in picosecond fluorescence studies with the primary processes of charge separation in the reaction center of photosystem II. We conclude that the experimental results from green algae and chloroplasts from higher plants are inconsistent with the concept that delayed luminescence after charge recombination should account for the long-lived (approx. 2 ns) fluorescence decay component of closed photosystem II centers. Instead, we show that the experimental data are in agreement with a model in which the long-lived fluorescence is also prompt fluorescence. The model suggests furthermore that the rate constant of primary charge separation is regulated by the oxidation state of the quinone acceptor QA.  相似文献   

4.
The most simple way in which the stoichiometry of chlorophyll a, pheophytin a and -carotene in isolated Photosystem II reaction center complexes can be determined is by analysis of the spectrum of the extracted pigments in 80% acetone. We present two different calculation methods using the extinction coefficients of the purified pigments in 80% acetone at different wavelengths. One of these methods also accounts for the possible presence of chlorophyll b. The results are compared with results obtained with HPLC pigment analysis, and indicate that these methods are suitable for routine determination of the pigment stoichiometry of isolated Photosystem II reaction center complexes.  相似文献   

5.
Fractionated Photosystem (PS) I particles consisting of six, five or two core proteins were analyzed by HPLC for chlorophyll (Chl) a and phylloquinone (PhQ). Each particle had a Chl a/P700 molar ratio of 50–55 and contained ca. 2 molecules of Chl a per P700. Deliberate control of eluent composition led to isolated elution of PhQ and -carotene in the normal-phase chromatogram. Based on these a simple HPLC procedure has been established to determine the PhQ/P700 molar ratio, which was ca. 2 for the larger two PS I particles and ca. 1 for the smallest particle, in line with previous reports.  相似文献   

6.
Mg(II)–porphyrin–ligand and (bacterio)chlorophyl–ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. 1H, 13C and 15N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9–5.2 ppm 1H, 0.2–5.5 ppm 13C and 2.1–27.2 ppm 15N coordination shifts were measured for selectively labeled [1,3-15N]-Im, [1,3-15N,2-13C]-Im and [1,3-15N,1,2-13C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the 1H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a–histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex.Abbreviations (B)Chl a (bacterio)chlorophyll a - HMBC heteronuclear multiple bond correlation - Im imidazole - LH light-harvesting - 1-MeIm 1-methylimidazole - Mg(II)-Por Mg(II)-porphyrin macrocycle - OEP 2,3,7,8,12,13,17,18-octaethylporphyrin  相似文献   

7.
Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSII∆OEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSII∆OEE were modified, but when only OEC33 or PSII∆OEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40°C but not at 25°C. In spinach leaves treated at 40°C under light, maximal efficiency of PSII photochemistry (F v/F m ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40°C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.  相似文献   

8.
The deficient mutant for the rice heterotrimeric G protein α subunit gene (RGA1), d1, showed dwarfism and set small seed due to a reduced cell number. Mutants for the rice heterotrimeric G protein β subunit gene (RGB1) have not been isolated. To determine the functions of RGB1, transgenic rice plants with suppressed expression of RGB1 were studied using the RNAi method. RGB1 knock-down lines showed browning of the lamina joint regions and nodes and reduced fertility, but these abnormality were not observed in d1. Transgenic plants in which the G protein β subunit was greatly decreased were not obtained, suggesting that the complete suppression of RGB1 mRNA may be lethal. In contrast, the d1 mutants, with complete loss of the G protein α subunit, were fertile and half the size of the WT. These studies suggest that RGB1 has different functions than RGA1.  相似文献   

9.
Shutova T  Irrgang K  Klimov VV  Renger G 《FEBS letters》2000,467(2-3):137-140
This study compares the properties of the extrinsic 33 kDa subunit acting as 'manganese stabilizing protein' (MSP) of the water oxidizing complex with characteristic features of proteins that are known to attain a 'natively unfolded' or a 'molten globule' structure. The analysis leads to the conclusion that the MSP in solution is most likely a 'molten globule' with well defined compact regions of beta structure. The possible role of these structural peculiarities of MSP in solution for its function as important constituent of the WOC is discussed.  相似文献   

10.
-Carotene was extracted from spinach Photosystem I reaction centers (one consisting of the Psa A, B, C, D and E subunits and the other consisting of the Psa A and B subunits alone), and the extract was subjected to high-pressure liquid chromatography using an apparatus equipped with a two-dimensional diode-array detector; all the procedures were performed at 4 °C in complete darkness. Both 15-cis and all-trans--carotene were identified in the extract by means of electronic absorption spectroscopy. Thus, universal presence of 15-cis carotenoid in the reaction centers of purple photosynthetic bacteria and of spinach Photosystem I and Photosystem II has been shown.Abbreviations Chl- chlorophyll - DEAE- diethylaminoethyl - DMF- dimethylformamide - HPLC- high pressure liquid chromatography - LHC- light-harvesting complex - PS- Photosystem - RC- reaction center - RCa,b- reaction center consisting of Psa A and B subunits alone - RCa-e- reaction center consisting of Psa A, B, C, D and E subunits  相似文献   

11.
Abstract

Interaction of yeast tRNAPhe with oligodeoxyribonucleotides (ONs), complementary to the nucleotides 62–76 was investigated. Results of gel-mobility shift assay and RNase A probing evidence that the ONs containing the sequence complementary to the tRNA ACCA end can easily invade the hairpin structure under physiological conditions. The limiting step of association process is the tRNA unfolding.  相似文献   

12.
A recombinant protein with a cDNA that encodes the putative subunit of a rice heterotrimeric G protein was synthesized in Escherichia coli and purified. The recombinant protein (rGrice ) with an apparent molecular mass of 45 kDa was bound with guanosine 5-(3-O-thio)triphosphate with an apparent association constant (kapp) of 0.36. The protein also hydrolyzed GTP and its Kcat was 0.44. rGrice was ADP-ribosylated by activated cholera toxin.Monoclonal antibodies raised against rGrice reacted with a 45 kDa polypeptide localized in the plasma membrane of rice seedlings. The peptide map of this polypeptide after digestion with V8 protease was identical to that of rGrice . A 45 kDa polypeptide in the plasma membrane, as well as rGrice , was ADP-ribosylated by activated cholera toxin. The GTPase activity of the plasma membrane was stimulated 2.5-fold by mastoparan 7 but not mastoparan 17. These properties were similar to those of the subunits of heterotrimeric G proteins in animals, suggesting that the putative subunit is truly the subunit itself.  相似文献   

13.
Normal and pathological stressors engage the AMP-activated protein kinase (AMPK) signalling axis to protect the cell from energetic pressures. Sex steroid hormones also play a critical role in energy metabolism and significantly modify pathological progression of cardiac disease, diabetes/obesity and cancer. AMPK is targeted by 17β-oestradiol (E2), the main circulating oestrogen, but the mechanism by which E2 activates AMPK is currently unknown. Using an oestrogen receptor α/β (ERα/β) positive (T47D) breast cancer cell line, we validated E2-dependent activation of AMPK that was mediated through ERα (not ERβ) by using three experimental strategies. A series of co-immunoprecipitation experiments showed that both ERs associated with AMPK in cancer and striated (skeletal and cardiac) muscle cells. We further demonstrated direct binding of ERs to the α-catalytic subunit of AMPK within the βγ-subunit-binding domain. Finally, both ERs interacted with the upstream liver kinase B 1 (LKB1) kinase complex, which is required for E2-dependent activation of AMPK. We conclude that E2 activates AMPK through ERα by direct interaction with the βγ-binding domain of AMPKα.  相似文献   

14.
The sun’s spectrum harvested through photosynthesis is the primary source of energy for life on earth. Plants, green algae, and cyanobacteria—the major primary producers on earth—utilize reaction centers that operate at wavelengths of 680 and 700 nm. Why were these wavelengths “chosen” in evolution? This study analyzes the efficiency of light conversion into chemical energy as a function of hypothetical reaction center absorption wavelengths given the sun’s spectrum and the overpotential cost associated with charge separation. Surprisingly, it is found here that when taking into account the empirical charge separation cost the range 680–720 nm maximizes the conversion efficiency. This suggests the possibility that the wavelengths of photosystem I and II were optimized at some point in their evolution for the maximal utilization of the sun’s spectrum.  相似文献   

15.
The purpose of the review is to show that the tetrameric (bacterio)chlorophyll ((B)Chl) structures in reaction centers of photosystem II (PSII) of green plants and in bacterial reaction centers (BRCs) are similar and play a key role in the primary charge separation. The Stark effect measurements on PSII reaction centers have revealed an increased dipole moment for the transition at approximately 730 nm (Frese et al., Biochemistry 42:9205-9213, 2003). It was found (Heber and Shuvalov, Photosynth Res 84:84-91, 2005) that two fluorescent bands at 685 and 720 nm are observed in different organisms. These two forms are registered in the action spectrum of Q(A) photoreduction. Similar results were obtained in core complexes of PSII at low temperature (Hughes et al., Biochim Biophys Acta 1757: 841-851, 2006). In all cases the far-red absorption and emission can be interpreted as indication of the state with charge transfer character in which the chlorophyll monomer plays a role of an electron donor. The role of bacteriochlorophyll monomers (B(A) and B(B)) in BRCs can be revealed by different mutations of axial ligand for Mg central atoms. RCs with substitution of histidine L153 by tyrosine or leucine and of histidine M182 by leucine (double mutant) are not stable in isolated state. They were studied in antennaless membrane by different kinds of spectroscopy including one with femtosecond time resolution. It was found that the single mutation (L153HY) was accompanied by disappearance of B(A) molecule absorption near 802 nm and by 14-fold decrease of photochemical activity measured with ms time resolution. The lifetime of P(870)* increased up to approximately 200 ps in agreement with very low rate of the electron transfer to A-branch. In the double mutant L153HY + M182HL, the B(A) appears to be lost and B(B) is replaced by bacteriopheophytin Phi(B) with the absence of any absorption near 800 nm. Femtosecond measurements have revealed the electron transfer to B-branch with a time constant of approximately 2 ps. These results are discussed in terms of obligatory role of B(A) and Phi(B) molecules located near P for efficient electron transfer from P*.  相似文献   

16.
Differential kinetic absorption spectra were measured during actinic illumination of photosystem II reaction centres and core complexes in the presence of electron acceptors silicomolybdate and ferricyanide. The spectra of samples with ferricyanide differ from those with both ferricyanide and silicomolybdate. Near-infrared spectra show temporary beta-carotene and peripheral chlorophyll oxidation during room temperature actinic illumination. Peripheral chlorophyll is photooxidized even after decay of beta-carotene oxidation activity and significant reduction of beta-carotene content in both reaction centres and photosystem II core complexes. Besides, new carotenoid cation is observed after about 1 s of actinic illumination in the reaction centres when silicomolybdate is present. Similar result was observed in PSII core complexes. HPLC analyses of illuminated reaction centres reveal several novel carotenoids, whereas no new carotenoid species were observed in HPLC of illuminated core complexes. Our data support the proposal that pigments of inner antenna are a sink of cations originating in the photosystem II reaction centre.  相似文献   

17.
18.
Can Trolox, a water-soluble analogue of α-tocopherol and a scavenger of singlet oxygen ((1)O(2)), provide photoprotection, under high irradiance, to the isolated photosystem II (PSII) reaction center (RC)? To answer the question, we studied the endogenous production of (1)O(2) in preparations of the five-chlorophyll PSII RC (RC5) containing only one β-carotene molecule. The temporal profile of (1)O(2) emission at 1270 nm photogenerated by RC5 in D(2)O followed the expected biexponential behavior, with a rise time, unaffected by Trolox, of 13 ± 1 μs and decay times of 54 ± 2 μs (without Trolox) and 38 ± 2 μs (in the presence of 25 μM Trolox). The ratio between the total (k(t)) and chemical (k(r)) bimolecular rate constants for the scavenging of (1)O(2) by Trolox in aqueous buffer was calculated to be ~1.3, with a k(t) of (2.4 ± 0.2) × 10(8) M(-1) s(-1) and a k(r) of (1.8 ± 0.2) × 10(8) M(-1) s(-1), indicating that most of the (1)O(2) photosensitized by methylene blue chemically reacts with Trolox in the assay buffer. The photoinduced oxygen consumption in the oxygen electrode, when RC5 and Trolox were mixed, revealed that Trolox was a better (1)O(2) scavenger than histidine and furfuryl alcohol at low concentrations (i.e., <1 mM). After its incorporation into detergent micelles in unbuffered solutions, Trolox was able to photoprotect the surface-exposed regions of the D1-D2 heterodimer, but not the RC5 pigments, which were oxidized, together with the membrane region of the protein matrix of the PSII RC, by (1)O(2). These results are discussed and compared with those of studies dealing with the physiological role of tocopherol molecules as a (1)O(2) scavenger in thylakoid membranes of photosynthetic organisms.  相似文献   

19.
The rat liver glucocorticoid receptor has been eluted from DNA-cellulose with pyridoxal 5′-phosphate at low ionic strength. This elution is concentration dependent with 80–90% of the receptor eluted in 30 rain at 0 °C when the concentration of pyridoxal 5′-phosphate is 10 mm. This elution is specific for the 4′-aldehyde group of pyridoxal 5′-phosphate since vitamin B6 analogs lacking this group are inactive in eluting the steroid-receptor complex from DNA-cellulose. Receptor has also been eluted from rat liver nuclei with similar results. The receptor eluted with pyridoxal 5′-phosphate has been compared with the receptor eluted with 0.45 m NaCl. Both methods of elution yield a steroid-receptor complex which sediments at about 3.7 S. The pyridoxal 5′-phosphate-eluted receptor however, is less prone to aggregation at low ionic strength and more stable with respect to steroid binding than the 0.45 m NaCl-eluted steroid-receptor complex. The complement of proteins eluted from DNA-cellulose with pyridoxal 5′-phosphate is very similar to that eluted with NaCl as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
Metazoan replication-dependent histone pre-mRNAs undergo a unique 3′-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF Im68), participates in histone RNA 3′-end processing. CF Im68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF Im68 cause significant decreases in processing efficiency. In vitro 3′-end processing is slightly stimulated by the addition of low amounts of CF Im68, but inhibited by high amounts or by anti-CF Im68 antibody. Finally, immunoprecipitation of CF Im68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF Im subunit, CF Im25, does not appear to be involved in histone RNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号