首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six years ago, DMM launched a subject collection called ‘Drosophila as a Disease Model’. This collection features Review-type articles and original research that highlight the power of Drosophila research in many aspects of human disease modeling. In the ensuing years, Drosophila research has further expanded to capitalize on genome editing, development of resources, and further interest in studying rare disease mechanisms. In the current issue of DMM, we again highlight the versatility, breadth, and scope of Drosophila research in human disease modeling and translational medicine. While many researchers have embraced the power of the fly, many more could still be encouraged to appreciate the strengths of Drosophila and how such research can integrate across species in a multi-pronged approach. Only when we truly acknowledge that all models contribute to our understanding of human biology, can we take advantage of the scope of current research endeavors.

Summary: This Editorial encourages us to embrace the power of the fly in studying human disease and highlights how Drosophila studies can be integrated with research in other species to further our understanding of human biology.

For over a century, scientists have used the fruit fly to learn about fundamental and evolutionarily conserved genetic and cellular processes. The pioneering work of Thomas Hunt Morgan and his students, in the early 20th century, proved that genes are located on chromosomes and led to the first chromosome linkage maps (Morgan, 1910). In the 1980s, Ed Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus showed that individual genes could be mutated to cause characteristic embryonic patterning defects (Lewis, 1978; Nüsslein-Vollhard and Wieschaus, 1980). Their genetic studies allowed them to order genes within functional pathways through epistasis analyses. The genes they identified have counterparts across species and play key roles in development and disease from flies to humans. Indeed, much of the molecular circuitry for key signaling pathways, such as RAS, Notch, Hedgehog and Wnt, was elucidated in Drosophila (Ashton-Beaucage and Therrien, 2017; Bejsovec, 2018; Ingham, 2018; Salazar and Yamamoto, 2018). This rich history has established Drosophila as a powerful tool in biology, paving the way for further advances in basic and translational research.  相似文献   

2.
3.
Monkol Lek, Assistant Professor at Yale University School of Medicine, and Associate Editor at Disease Models & Mechanisms, dedicates his research to finding a genetic diagnosis and improving treatments for rare disease patients. As he originally studied computer engineering at the University of New South Wales in Sydney, Australia, he now utilises computational methods to optimise large-scale genetic studies, provide globally accessible resources for genetic research communities and, importantly, resolve diagnostic odysseys for rare disease patients. Monkol completed his PhD in Prof. Kathryn North''s lab at the University of Sydney, studying the genetics of muscle strength and performance, and then continued his investigation of muscle disease in Prof. Daniel MacArthur''s lab at Massachusetts General Hospital and the Broad Institute. During his postdoc, he led several large-scale studies aimed at distinguishing pathogenic from benign variants, including the Exome Aggregation Consortium (ExAC) project ( Lek et al., 2016). Monkol established his own lab at Yale University School of Medicine, which continues to improve the diagnosis and treatment of rare muscle disease, and also focuses on underserved populations, whose genetic mutations are not as well characterised as those of European ancestry. In this interview, Monkol discusses how his own diagnosis with limb girdle muscular dystrophy has shaped his career and what he envisions for the future of genetic research in rare disease.

You have a very unique career path – could you tell us a little bit about that? My first degree was in computer engineering. When I first went to university, I studied the hardware and software of computers. I really liked the software aspect of the degree, and so I worked for IBM as a software developer when I finished university. However, during the last few years of university, I noticed that my muscles were getting weaker. My university was on a big hill, with classes at the bottom and top of the hill, and I had to stand up for about 3 h a day while commuting on public transport. It started becoming obvious that I had something wrong with my muscles because I felt totally exhausted at the end of the day. It was frustrating, because I felt that my performance at university was impacted by something that had nothing to do with my ability to think. So, I went from doctor to doctor to try to find out what was wrong with me. As a lot of doctors are not trained in rare diseases, they didn''t consider a rare disease diagnosis. Then one doctor did a blood test for creatine kinase (CK), which is leaked into the bloodstream when muscle is damaged. In healthy people, high levels of CK are detected in the bloodstream after they''ve done intensive exercise, like a marathon. If someone hasn''t done something like that, but they have high levels of circulating CK, it could be an indication that there''s something wrong with their muscles. As I had high levels of CK in my bloodstream, I then went to a neurologist, which was when I got a clinical diagnosis. At that point, they didn’t know the root cause of the problem, but they knew that I have a muscle disease based on several tests, including a nerve conduction test.I received this clinical diagnosis during my time in IBM, and that''s when I became dissatisfied with my job, because I felt that I was using all my talents to make a very big, international company richer. I was also becoming frustrated when visiting the neurologist every 6 months, as all they would tell me was that my muscles were getting weaker, which I already knew. I began to think that not much was happening in the neuromuscular disease field if that''s the best they could offer me. I wanted to know what the root cause of my disease was and if there were any treatment options. I came to the conclusion that no one would care about my disease more than I would, because I''m the one that has lived with it every day of my life.That''s when I decided to leave IBM and pursue a career in researching muscle disease. It didn''t go down well with my parents and friends, because I was leaving a well-paid job to go back to university to get paid nothing for an unknown number of years. If I had known my chances of success – completing a meaningful PhD, doing a meaningful postdoc and landing a faculty position – I wouldn''t have gone on this journey. I have been very fortunate, but I wasn''t always in the right place at the right time.When I finished my undergraduate degree in bioinformatics and physiology at the University of New South Wales, I started a PhD in Melbourne, but it didn''t work out, because not all supervisors are perfect. My wife and I then returned to Sydney, where my wife bumped into one of the professors from our undergraduate degree. She explained that we''d had a bad experience in Melbourne with our PhDs, but our passion was still to do muscle research. The professor''s daughter was researching muscle disease in Kathryn North''s lab at the University of Sydney, and she invited us to visit the lab. I was offered an opportunity to do my PhD in Kathryn''s lab, but I was initially reluctant as it was a diagnostic lab, and I was more interested in developing therapies for people with muscle disease. However, I thought I could still learn a lot about muscle physiology and, in the long term, I''m glad that I received training and mentorship from Kathy''s lab. Also, if I hadn''t done my PhD there, I wouldn''t have met Daniel MacArthur, my future boss. He was a very talented student in Kathy''s lab, who taught me a lot about scientific communication among other things, and I taught him some coding skills. He left to work on the 1000 Genomes Project in Cambridge, UK, but I kept in contact with him to get his advice on my project.When I was finishing my PhD, Daniel asked if I wanted to join the lab he was setting up in Massachusetts General Hospital and the Broad Institute. His lab was going to study common loss-of-function mutations in human populations using large datasets from the 1000 Genomes Project, but he offered me a project investigating neuromuscular diseases. As soon as I submitted my PhD thesis, I started working in his lab. This was perfect timing, because it was 2012, when exome sequencing had recently been published in the context of rare diseases (Ng et al., 2010) and, more importantly, it was becoming affordable, in terms of research. I waited over 10 years for a genetic diagnosis, so my goal was that no one should have to wait that long in the future.Through collaboration with our former PhD lab, Daniel and I used samples from undiagnosed patients to find answers for Australian families. The first family had two affected girls with undiagnosed nemaline myopathy, who had been on a diagnostic odyssey for about 9 years. It was amazing how quickly we progressed from receiving the samples to identifying the novel gene, LMOD3, associated with their disease (Yuen et al., 2014). This was part of my main project during my postdoc – working on gene discovery in neuromuscular diseases and finding answers for patients that have been waiting years and years to get a genetic diagnosis (Ghaoui et al., 2015; O''Grady et al., 2016).The project that most people know me for is the ExAC project, which was initially my ‘side’ project during my postdoc. The idea was to create a big database of all rare variants that we see in the general population, so we can better interpret the rare variants that we see in rare disease patients. When we were creating it, we thought that it may be useful to other researchers around the world. Therefore, we tried to ensure, through data-use agreements and consent processes, that we could share as many of our findings as possible. I''m happy to say my side project was quite successful. After that, I led other projects, including an analysis group in the Centre for Mendelian Genomics, to expand that framework and idea across all rare diseases, not just neuromuscular diseases (Baxter et al., 2022).I was having a lot of fun at the Broad Institute, and I was co-author on a lot of high-impact papers. However, the reason I left the Broad Institute was that I wanted to be involved in the full journey for the patients. Sometimes scientists don''t understand that getting a genetic diagnosis is not the end of the journey for a patient. After the diagnosis they want to know what treatment options are available. Yale gave me the opportunity to continue doing the gene discovery and analytical work that I was doing at the Broad Institute, plus the capability of doing experiments with mouse models to investigate gene replacement therapies and other therapeutic approaches.
“I waited over 10 years for a genetic diagnosis, so my goal was that no one should have to wait that long in the future.”
How has being both a researcher and a patient affected your career? When I was first diagnosed, there was a neurologist who discouraged me from researching my own disease and this became the basis of my TEDx talk, because I thought it was very condescending. I thought, “Just because I have this disease, it doesn''t mean that I have a low IQ”. However, this experience motivated me more. I discussed it with Kathy before starting my PhD, and her encouragement and enthusiasm was refreshing. At the time, in the early 2000s, people hadn''t accepted the idea of patients researching their own disease. Things have changed since then, mainly because there are more examples of it now (Branca, 2019), but at the time, it was really hard for me to progress in science. I always thought that people were looking at me with sympathy, and I felt like I had to achieve twice as much to get the same respect as someone else who wasn''t as talented or didn''t work as hard as me. It was frustrating, but in everyday life people still correlate physical disability with intellectual disability. For example, if my wife is pushing me in the wheelchair in public, no one ever directs a question to me because they assume that the physical disability comes with mental disabilities. There are well-known examples of scientists with physical disabilities, like Stephen Hawking, but it is still challenging in academia when you have a physical disability and people make certain assumptions about you.On the other hand, just before starting at Yale, my collaborators at the University of Massachusetts took a skin biopsy from me. With this skin biopsy, they created induced pluripotent stem cells, and, using CRISPR, they corrected my disease-associated gene variant in the cultured cells. They then published this in a Nature article, in which fig. 1 is the experiment in which they corrected my mutation (Iyer et al., 2019). Are there specific skills or knowledge you learned while working in computer engineering that have helped shape and develop your research today? When I started my PhD, there was an increase in how much genetics research, and biological research in general, relied upon big data. It can be very challenging to work with big data if you''re a biologist without a background in computer science. You can go online to teach yourself to an extent, but it gives you an advantage to learn the theory behind a lot of algorithms and other aspects of software engineering, in a formal setting. It makes the difference between building tools that take a week to analyse a set of data and building tools that take a few minutes to analyse the same data. If you can analyse the data more quickly, you can explore different possibilities and ideas much more quickly. You can''t learn everything online, and having a firm foundation of knowledge can enable you to work with big data in an efficient way.The other thing that you learn from computer science is a certain mindset when approaching problem solving. This is because you have to debug code frequently and, due to this fast pace, you learn quickly. This helped me to troubleshoot problems in biological research quickly.
“Getting a genetic diagnosis is not the end of the journey for a patient. After the diagnosis they want to know what treatment options are available.”
What do you think are the key challenges for rare disease research and diagnosis moving forward? I now have a greater appreciation of the challenges because I see it from two points of view: one as a researcher in a group and one as a PI, who leads the research. The diagnosis rate for rare disease is about 50%, so there are still 50% of patients with a disease that has an unknown genetic cause. The gold standard requirement for associating a new disease gene with a novel phenotype is that it presents in multiple unrelated families (MacArthur et al., 2014). However, when you work with rare diseases, there is the issue of small sample numbers. One challenge for basic scientists is creating good collaborations with physician scientists across the world to enable you to create a large enough dataset.The other challenge is the cost of research for these diseases with unknown genetic cause. The 50% of cases for which we know the genetic cause are no longer considered an area of research, as clinical genetic services can now diagnose these patients. To diagnose the remaining patients, you have to use more expensive technologies, such as long-read sequencing.The last thing is the interpretation of rare variants. Although the ExAC project helped with this, there is still a challenge. For example, if a patient has a rare genetic variant, this doesn''t necessarily mean it is the cause of their rare disease. This is because even healthy people have rare variants. So, we have a massive interpretation challenge in rare disease genetics, which can be overcome by creating a laboratory model system with that genetic variant to investigate it further. However, if you had 1000 variants to consider, it''s not going to scale as an animal model. So, an important question is how can we interpret these variants in a scalable manner? This is one of the main driving forces behind the new Subject Focus, ‘Genetic variance in human disease: decoding diversity to advance modern medicine’, that we are launching in DMM. You have led and coordinated several studies involving very large cohorts. From your experience what are the key components of a successful study? I think the key to a successful large cohort study with unsolved rare disease patients, is the amount of structured phenotype data you can collect. This requires a good collaborator, who has the time to prepare that data in a meaningful way, which makes it easier to find other families with the same rare disease. The other thing is to have the ability to recontact patients and collect different samples from them, because we''re moving to a more multi-omics world. Therefore, we need the ability to go beyond just collecting DNA samples. Also, we''re in a world where we''re starting to link data to electronic health records, which allows the collection of deeper and richer phenotype data that enable associations to be made between families.In addition, you can''t work in isolation. In order for us to make a meaningful impact, we need to work with groups that have specialties outside of our own. For instance, we collaborate with groups that specialise in the interpretation of non-coding variants. This is important as variants in these regions could hold the answers for some of those unsolved cases.Another key aspect to a successful study is collaboration with statistical geneticists because some of the more complicated questions are best asked by them. Some of these questions go beyond monogenic diseases. We are seeing convergence between genome-wide association studies, looking for many variants, each with very small contributions to a disease, and studies of Mendelian disease that are looking for one gene that causes disease. The field has to start looking at diseases in the middle of this spectrum, which requires statistical geneticists. This is because you need to make sure that your conclusions are correct. For instance, if you''re asking whether a rare disease is caused by a combination of two genes, then you must have a robust statistical model to show that these variants aren''t presenting together by chance. You have to prove that those two variants are acting in concert, instead of independently, to cause this disease. My colleagues at Yale published a great paper that demonstrated this concept (Timberlake et al., 2016).Lastly, it is important to forge meaningful collaborations beyond academia. A lot of my colleagues are being funded by industry collaboration, and a lot of these companies have access to more samples than we do in academia. You can also collaborate with large biobanks, such as the UK Biobank, which has a rich set of phenotype data and also the ability to recontact patients (Glynn and Greenland, 2020). The FinnGen project is a recent public–private collaboration that combines genetic data with electronic health records from Finnish biobank participants to improve disease diagnosis and treatment (Kurki et al., 2022 preprint). So, working with biobanks and industry is another way of increasing sample numbers, which is the biggest challenge in rare disease research.
“We don''t want to create disparity in terms of health, especially in the context of genetics, which will continue to become more prominent in modern medicine.”
You dedicate a lot of your research towards patients in underserved populations, such as East Asian populations, whose genetic mutations are not as well characterised as those of European ancestry. Can you explain the importance of this? One of the reasons that it took over 10 years for me to get a genetic diagnosis was because the gene that causes my disease was first reported as not commonly associated with disease in populations of European ancestry. The problem with biomedical research is that when people read that, they think it applies to everyone, even patients who have non-European ancestry. Although the gene that causes my disease aligned with my muscle disease phenotype, it wasn''t sequenced because of this assumption. They only decided to sequence this gene once they did linkage analysis of my family, and this was the only gene associated with neuromuscular disease in the linkage region they identified. This is the reason why we need to have good data on all populations. The ExAC and gnomAD studies that I worked on acknowledged that we need good allele frequency data for populations of East Asian, South Asian, Latino and African ancestry, because we don''t want to create disparity in terms of health, especially in the context of genetics, which will continue to become more prominent in modern medicine.If you want to deliver the best healthcare, you have to realise that some variants and diseases are more common in certain populations, such as Tay-Sachs disease, which is common amongst the Jewish community, and sickle cell anaemia, which is more prevalent in populations of African ancestry. By understanding these differences, we can actually find a genetic diagnosis a lot quicker. If it''s not a de novo variant, and is instead a variant inherited in the population, and if you''ve made the discovery in East Asians, there is a better chance of identifying more incidences of this variant in the population in which it was first discovered.I think it''s also good for validation of data, because if you had discovered a potential disease-causing variant and you find that this variant has a frequency of 1% or higher in a non-European population, then it''s impossible for it to be the cause of a rare disease, regardless of its frequency in a European population (Lek et al., 2016).  相似文献   

4.
5.
During the current COVID-19 pandemic, there has been renewed scientific and public focus on understanding the pathogenesis of infectious diseases and investigating vaccines and therapies to combat them. In addition to the tragic toll of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we also recognize increased threats from antibiotic-resistant bacterial strains, the effects of climate change on the prevalence and spread of human pathogens, and the recalcitrance of other infectious diseases – including tuberculosis, malaria, human immunodeficiency virus (HIV) and fungal infections – that continue to cause millions of deaths annually. Large amounts of funding have rightly been redirected toward vaccine development and clinical trials for COVID-19, but we must continue to pursue fundamental and translational research on other pathogens and host immunity. Now more than ever, we need to support the next generation of researchers to develop and utilize models of infectious disease that serve as engines of discovery, innovation and therapy.

Summary: This Editorial considers how knowledge from animal and other models of infectious disease can impact our understanding of human biology and potential therapies, focusing largely on zebrafish. It also highlights ways in which DMM is supporting these areas.

As an Editor at Disease Models & Mechanisms (DMM) and an academic researcher using zebrafish as a model to study tuberculosis, it is especially exciting to read and publish research in zebrafish to obtain, in a whole, live vertebrate, insights into infectious diseases and therapies (Box 1). Indeed, zebrafish provide a remarkable vertebrate model for many questions related to infectious disease. Embryos and larvae are optically transparent, enabling microscopy of both pathogen and host that would be more challenging or cumbersome in other systems (Fig. 1). Knock-in of fluorescent tags at endogenous loci allows direct and detailed in vivo visualization of the host immune response (Cronan et al., 2018). Both forward and reverse genetic approaches for understanding infection are straightforward and are buttressed by the high-throughput capabilities of this model, in which a single tank of adult zebrafish can produce hundreds of embryos per week. Furthermore, chemical biology screens and interventions using intact, living animals are uniquely accessible to researchers, as zebrafish larvae and embryos are permeable to diverse small molecules and fit within a single well of 96-well and 384-well plates (Patton et al., 2021). Open in a separate windowFig. 1.Zebrafish larva infected with fluorescent Mycobacterium abscessus expressing TdTomato, shown in red. Image courtesy of Matt Johansen (Johansen et al., 2021).Box 1. DMM highlights zebrafish advancing knowledge in infectious diseaseRecent publications in DMM show the potential of the zebrafish model system to provide new or fuller insights into infectious diseases and therapies. One question being addressed is how basic cell-autonomous immune processes function in the context of a full organism. Various Reviews have highlighted what we have learned about the role of pyroptosis in host defence against bacterial infections (Brokatzky and Mostowy, 2022), as well as advances in understanding the diverse roles that macrophages and neutrophils play during the initial response to a variety of infectious and inflammatory stimuli (Rosowski, 2020). Zebrafish can also provide models for parasitic diseases that are relatively neglected, and we were pleased to publish a zebrafish model that provides insight into Toxoplasma pathogenesis, particularly the in vivo interactions of Toxoplasma with macrophages (Yoshida et al., 2020). Research dissecting the role of host immune cells in pathogen responses can be further potentiated by new tools, such as those developed by the Lieschke laboratory using macrophage and neutrophil-specific Cas9 driver lines to allow cell-specific genetic perturbation (Isiaku et al., 2021).Non-tuberculous mycobacteria causing pulmonary disease are a growing threat worldwide, with an antibiotic resistance profile that makes them very difficult to treat (Stout et al., 2016; Vinnard et al., 2016). An exploration of phage therapy for non-tuberculous mycobacteria in the zebrafish provides new insights into exciting clinical work that bookends this publication (Johansen et al., 2021). Engineered bacteriophages targeting specific strains of Mycobacterium abscessus have now been used clinically in cases of advanced lung disease (Dedrick et al., 2019; Nick et al., 2022). In other work, Habjan et al. employed the zebrafish mycobacterial infection model as an early screening step for anti-tuberculosis hits from in vitro screens that might have the best chance for in vivo translation. Following up on a screen for novel in vitro activity against Mycobacterium tuberculosis that identified ∼240 compounds, they identified 14 compounds with good in vivo activity. Impressively, they went on to identify the target of the strongest in vivo hit as being a mycobacterial aspartyl-tRNA synthase through screening for resistant mutants in both Mycobacterium marinum and Mycobacterium tuberculosis (Habjan et al., 2021).Drug screens, like those discussed above, are possible due to the permeability of the zebrafish to small molecules, which also allows creative ways to control the induction of host cytokines. DMM published an approach that enables drug-inducible, tissue-specific, titratable expression of different cytokines (Ibrahim et al., 2020). Harnessing this permeability in zebrafish can also enable detailed exploration of the effects of drugs, such as broadly used glucocorticoids, on specific innate immune cell types (Xie et al., 2019).The zebrafish has also been used as a model to understand infectious disease therapies targeting the pathogen directly. A recent paper describes the in vivo efficacy of nanoparticle-based delivery of lipophilic antibiotics, as well as use of the zebrafish to screen different formulations (Knudsen Dal et al., 2022). Finally, in the adult zebrafish sphere, a recent Review focused on how zebrafish can inform vaccine development strategies (Saralahti et al., 2020).These recent publications highlight some of the strengths of the zebrafish model for infectious disease research. DMM aims to be at the forefront in encouraging scientists and clinicians to leverage these insights for future therapies.Although efforts in zebrafish are often recognized and valued within the model organism community and beyond, it can sometimes be hard to break through to the world of clinical research. I vividly remember the excitement of being invited to present my work as a starting assistant professor at an early-career researcher lunch with a prominent visiting scientist, only to have my research and plans dismissed with some variation of “Well, why don''t you try to figure out what''s actually going on in people?”.Indeed, this is what many zebrafish researchers are ultimately trying to do by a different route. The goal of harnessing the knowledge we generate in models to impact human biology and therapies is an important part of the scientific enterprise. Many of us want and expect our findings to be relevant beyond the context of a model system. In my field, it has been exciting to see work in the zebrafish emerge that has led to the discovery of fundamentally conserved features of tuberculosis and host immunity – from zebrafish to humans – and has since translated to ongoing clinical trials.However, although we might hope that our work will be inherently understood and utilized in the clinical context, maximizing the potential of this research requires community advocates and communicators to help place the work in context. This can be achieved through ongoing dialogue among researchers, clinicians and patients to understand medical needs and perspectives. For example, DMM and The Company of Biologists have been long-time supporters of societies, such as the Zebrafish Disease Models Society, which focuses on the translational potential of zebrafish for understanding human disease and for developing new therapies, including some being investigated in clinical trials.Thus, it is useful to consider the following three broad themes when using model organisms in infectious disease research:
  1. Conserved host–pathogen interactions in model systems. Although we all recognize, even at a strictly visual level, the many differences between the biology of a model organism and human biology, there is fundamentally conserved biology to be explored. Immune signalling pathways and underlying principles, as well as molecular and cellular details, first discovered and dissected in worms, flies, fish, mice and other model organisms, have translated remarkably well to human biology in many cases.
  2. Model diversity. Divergent biology – in addition to being fascinating and important for the sake of knowledge itself – also leads to vital new insights and therapeutic approaches. As just one example, bacteriophages were instrumental in the discovery of fundamental aspects of gene regulation, have been used to facilitate genetic manipulation of seemingly genetically intractable pathogens, and are now being engineered and deployed therapeutically. And the study of bacterial–bacteriophage interactions of course led to all the advances made possible by CRISPR. These and many other examples from models that diverge from humans all support open-mindedness in science and emphasize the strength of laboratories taking diverse approaches and using diverse models. Pressing questions and opportunities in this realm are many, including investigation of how some non-human immune systems – those of bats, as just one example – permit asymptomatic tolerance of viruses that may be pathogenic in humans (Hayman, 2019). Which animal species restrict human pathogens via immune mechanisms that might eventually be harnessed therapeutically? Some of these topics will be prominent in a 2023 meeting organized by DMM entitled ‘Infectious Diseases Through an Evolutionary Lens’, which will take place in London at the British Medical Association House (Fig. 2).Open in a separate windowFig. 2.DMM''s 2023 meeting is entitled ‘Infectious Diseases Through an Evolutionary Lens’ and will take place in London at the British Medical Association House. Register your interest here: https://www.biologists.com/infectious-diseases-through-an-evolutionary-lens-contact-form/.
  3. Engineering preclinical and predictive models of infectious disease. With advances in gene editing and the ability to make specific base edits, it is possible to precisely model human variants in an in vivo context during infection. Organisms like the zebrafish can provide useful models to delve into the specific consequences of these variants. Orthogonal approaches include mammalian animal models and advanced human cell models (Leist et al., 2020; van der Vaart et al., 2021). Discussion between scientists doing this preclinical work and clinical collaborators will be needed to determine to what degree the model recapitulates human disease and how these models can be used to advance new therapies. Recently, we have seen some of the landscape for clinical trials change, and in public health emergencies, collaborations would ideally accelerate the time from discovery to clinic. Again, this will require dialogue with and buy-in from clinical researchers to put together rigorous clinical trials.
DMM seeks to create and contribute to the ongoing conversations among and between basic scientists, clinical researchers and clinicians, with insights and criticisms from each of these domains. By highlighting rigorous, high-quality science in these areas, we hope to contribute to improved understanding of infectious diseases and new approaches to treatment.  相似文献   

6.

Background

GGAs (Golgi-localised, γ-ear containing, ADP ribosylation factor-binding) are a family of clathrin adaptors that sort a number of biologically important transmembrane proteins into clathrin-coated vesicles. Knockout and knockdown studies to determine GGA function are confounded by the fact that there are 3 GGA genes in mammalian cells. Thus Drosophila melanogaster is a useful model system to study tissue expression profiles and knockdown phenotypes as there is a single GGA ortholog.

Results

Here we have quantified protein expression in Drosophila and show that there is >3-fold higher expression of GGA in male flies relative to female flies. In female flies the majority of GGA expression is in the head. In male flies GGA is not only expressed at high levels in the head but there is a gender specific increased expression which is due to the abundant expression of GGA in the testes. Using a highly specific antibody we have localised endogenous GGA protein in testes squashes, and visualised it in somatic and germ line cells. We show that GGA is expressed during multiple stages of sperm development, and co-stains with a marker of the trans-Golgi Network. This is most striking at the acroblast of early spermatids. In spite of the high expression of GGA in testes, knocking down its expression by >95% using transgenic RNAi fly lines did not affect male fertility. Therefore spermatogenesis in the male flies appears to progress normally with <5% GGA, most likely because alternative adaptors may be able to substitute partially or completely for the function of GGA. We also identify 'cueball' as a novel cargo for GGA, and mutants of cueball have been shown to have a male sterility phenotype.

Conclusion

In Drosophila we have uncovered a potential role for GGA in the testes of male flies. The gender specific higher expression of GGA, its specific enrichment in testes and its localisation to developing spermatocytes and at the acroblast of spermatids supports a role for GGA function in Drosophila spermatogenesis, even though spermatogenesis still occurs when GGA expression is depleted to <5% of control.  相似文献   

7.
8.
The role of mitochondrial complex I in aging has been studied in both C. elegans and Drosophila, where RNAi knock down of specific complex I subunits has been shown to extend lifespan. More recently, studies in Drosophila have shown that an increase in mitochondrial activity, including complex I-like activity, can also slow aging. In this review, we discuss this apparent paradox. Improved maintenance of mitochondrial activity, mitochondrial homeostasis, may be responsible for lifespan extension in both cases. Decreased electron transport chain activity caused by reducing complex I subunit expression prompts an increase in stress response signaling that leads to enhanced mitochondrial homeostasis during aging. Increased complex I activity, as well as mitochondrial biogenesis, is expected to both directly counteract the decline in mitochondrial health that occurs during aging and may also increase cellular NAD+ levels, which have been linked to mitochondrial homeostatic mechanisms through activation of sirtuins. We suggest that manipulations that increase or decrease complex I activity both converge on improved mitochondrial homeostasis during aging, resulting in prolonged lifespan.  相似文献   

9.
Amalaki Rasayana (AR) is a common Ayurvedic herbal formulation of Phyllanthus emblica fruits and some other ingredients, and is used for general good health and healthy aging. We reported it to improve life history traits and to suppress neurodegeneration as well as induced apoptosis in Drosophila. The present study examines responses of Drosophila reared on AR-supplemented food to crowding, thermal or oxidative stresses. Wild-type larvae/flies reared on AR-supplemented food survived the various cell stresses much better than those reared on control food. AR-fed mutant park 13 or DJ-1β Delta93 (Parkinson’s disease model) larvae/flies, however, showed only partial or no protection, respectively, against paraquat-induced oxidative stress, indicating essentiality of DJ-1β for AR-mediated oxidative stress tolerance. AR feeding reduced the accumulation of reactive oxygen species (ROS) and lipid peroxidation even in aged (35-day-old) wild-type flies while enhancing superoxide dismutase (SOD) activity. We show that while Hsp70 or Hsp83 expression under normal or stress conditions was not affected by AR feeding, Hsp27 levels were elevated in AR-fed wild-type control as well as heat-shocked larvae. Therefore, besides the known anti-oxidant activity of Phyllanthus emblica fruits, dietary AR also enhances cellular levels of Hsp27. Our in vivo study on a model organism shows that AR feeding significantly improves tolerance to a variety of cell stresses through reduced ROS and lipid peroxidation on the one hand, and enhanced SOD activity and Hsp27 on the other. The resulting better homeostasis improves life span and quality of organism’s life.  相似文献   

10.

Background

Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R) stresses on Drosophila, a useful, anoxia tolerant, model organism.

Methodology/Principal Findings

Newly emerged adult male flies were exposed to anoxic conditions (<1% O2) for 1 to 6 hours, reoxygenated and their survival was monitored.

Results

A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sima loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribosefuranoside), an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state.

Conclusion/Significance

Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling pathway are possible mediators of diet dependent anoxic tolerance in Drosophila.  相似文献   

11.
The ubiquitin–proteasome system is one of the main proteolytic pathways. It inhibits apoptosis by degrading pro-apoptotic regulators, such as caspases or the tumor suppressor p53. However, it also stimulates cell death by degrading pro-survival regulators, including IAPs. In Drosophila, the control of apoptosis by Bcl-2 family members is poorly documented. Using a genetic modifier screen designed to identify regulators of mammalian bax-induced apoptosis in Drosophila, we identified the ubiquitin activating enzyme Uba1 as a suppressor of bax-induced cell death. We then demonstrated that Uba1 also regulates apoptosis induced by Debcl, the only counterpart of Bax in Drosophila. Furthermore, we show that these apoptotic processes involve the same multimeric E3 ligase—an SCF complex consisting of three common subunits and a substrate-recognition variable subunit identified in these processes as the Slimb F-box protein. Thus, Drosophila Slimb, the homologue of β-TrCP targets Bax and Debcl to the proteasome. These new results shed light on a new aspect of the regulation of apoptosis in fruitfly that identifies the first regulation of a Drosophila member of the Bcl-2 family.  相似文献   

12.
The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23–33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28–32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.  相似文献   

13.
Wang L  Zhou C  He Z  Wang ZG  Wang JL  Wang YF 《PloS one》2012,7(3):e32643

Background

The heavy metal lead has been shown to be associated with a genotoxic risk. Drosophila melanogaster is a model organism commonly utilized in genetic toxicology testing. The endosymbionts — Wolbachia are now very common in both wild populations and laboratory stocks of Drosophila. Wolbachia may induce resistance to pathogenic viruses, filarial nematodes and Plasmodium in fruit fly and mosquito hosts. However the effect of Wolbachia infection on the resistance of their hosts to heavy metal is unknown.

Methodology/Principal Findings

Manipulating the lead content in the diet of Drosophila melanogaster, we found that lead consumption had no different effects on developmental time between Wolbachia-infected (Dmel wMel) and –uninfected (Dmel T) flies. While in Pb-contaminated medium, significantly reduced amount of pupae and adults of Dmel wMel were emerged, and Dmel wMel adults had significantly shorter longevity than that of Dmel T flies. Lead infusion in diet resulted in significantly decreased superoxide dismutase (SOD) activity in Dmel T flies (P<0.05), but not in Dmel wMel flies. Correspondingly, lead cultures induced a 10.8 fold increase in malonaldehyde (MDA) contents in Dmel T larvae (P<0.05). While in Dmel wMel larvae, it resulted in only a 1.3 fold increase. By quantitative RT-PCR, we showed that lead infused medium caused significantly increased expression level of relish and CecA2 genes in Dmel T flies (P<0.01). Lead cultures did not change dramatically the expression of these genes in Dmel wMel flies.

Conclusions/Significance

These results suggest that Wolbachia infection decreased the resistance of Drosophila to lead likely by limiting the production of peroxides resulted from lead, thus being unable to activate the immunological pathway in the host to prevent them from lead damage. This represents a novel Wolbachia–host interaction and provides information that researchers working on Drosophila toxicology should take in consideration the presence of Wolbachia in the stocks they are analyzing.  相似文献   

14.
PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.  相似文献   

15.

Background

Insects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan''s paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan''s paradigm.

Methodology/Principal Findings

We present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack) and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn) software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA). It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped), either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity.

Conclusions/Significance

Using computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation) were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and analysis of digital behavioral data.  相似文献   

16.

Background

Chronic hypoxia is a major component of ischemic diseases such as stroke or myocardial infarction. Drosophila is more tolerant to hypoxia than most mammalian species. It is considered as a useful model organism to identify new mechanisms of hypoxic tolerance. The hypoxic tolerance of flies has previously been reported to be enhanced by low protein diets. This study analyses the mechanisms involved.

Results

Feeding adult Drosophila on a yeast diet dramatically reduced their longevities under chronic hypoxic conditions (5% O2). Mean and maximum longevities became close to the values observed for starving flies. The action of dietary yeast was mimicked by a whole casein hydrolysate and by anyone of the 20 natural amino acids that compose proteins. It was mimicked by amino acid intermediates of the urea cycle such as L-citrulline and L-ornithine, and by polyamines (putrescine, spermidine and spermine). α-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, partially protected hypoxic flies from amino acid toxicity but not from polyamine toxicity. N1-guanyl-1,7 diaminoheptane, a specific inhibitor of eIF5A hypusination, partially relieved the toxicities of both amino acids and polyamines.

Conclusion

Dietary amino acids reduced the longevity of chronically hypoxic flies fed on a sucrose diet. Pharmacological evidence suggests that the synthesis of polyamines and the hypusination of eIF5A contributed to the life-shortening effect of dietary amino acids.  相似文献   

17.
18.
The Down syndrome critical region 1 (DSCR1), a Down syndrome-associated protein, is an endogenous inhibitor of the Ca2+-dependent phosphatase calcineurin. It has been also suggested to be associated with Alzheimer’s disease (AD) but the role of DSCR1 in the pathogenesis of AD still remains controversial. In this paper, we investigated the effects of knockdown of sarah (sra), a Drosophila DSCR1 ortholog, on the Aβ42-induced developmental phenotypes of Drosophila. Knockdown of sra showed detrimental effects on the rough eye phenotype and survival of Aβ42-expressing flies without altering the Aβ42 accumulation. Furthermore, the knockdown of sra increased glial cell numbers in the larval brains and its susceptibility to oxidative stress. Overexpression of an active form of calcineurin produced similar results to sra knockdown as they both exacerbated the Aβ42-induced rough eye phenotype. However, sra knockdown did not alter apoptosis or c-Jun N-terminal kinase activation in Aβ42-expressing flies. In conclusion, our results suggest that sra does play an important role in Aβ42-induced developmental defects in Drosophila without affecting its stress responses.  相似文献   

19.
Studies were conducted to determine the effect of insecticide residues on germination of primary conidia ofentomophthora muscae (Cohn) Fresenius and to determine the relative susceptibility of healthy and infectedMusca domestica L. to insecticides. Primary conidia were discharged fromM. domestica cadavers onto glass microscope slides treated with insecticides. All insecticides significantly inhibited germination relative to control slides. Permethrin and naled had the least inhibition (36–40 %), while malathion and dimethoate almost completely inhibited germination (87–94 %). Tetrachlorvinphos/dichlorvos and carbaryl were intermediate (57–59 %). Healthy flies were not significantly different from infected flies in terms of susceptibility to naled, dimethoate, or permethrin. Infected flies exposed on the last day of pathogen incubation died on the bottom of the Petri dishes, rather than climbing and attaching as did untreated, infected flies. Both control and treated groups produced large numbers of primary conidia.  相似文献   

20.
The proportion of the Drosophila genome coding for ribosomal RNA was examined in DNA from both diploid and polytene tissues of Drosophila melanogaster by rRNA-DNA hybridization. Measurements were made on larvae with one, two, three and four nucleolus organizer regions per genome. In DNA from diploid tissues the percent rDNA (coding for 28S and 18S ribosomal DNA) was found to be in proportion to the number of nucleolus organizers present. The number of rRNA genes within a nucleolus organizer therefore does not vary in response to changes in the number of nucleolus organizers. On the other hand, in DNA from cells with polytene chromosomes the percent rDNA remained at a level of about 0.1% (two to six times lower than the diploid values), regardless of either the number of nucleolus organizers per genome or whether the nucleolus organizers were carried by the X or Y chromosomes. This independence of polytene rDNA content from the number of nucleolus organizers is presumably due to the autonomous polytenization of this region of the chromosome. When the rDNA content of DNA from whole flies is examined, both the rDNA additivity of the diploid cells and the rDNA independence of polytene cells will affect the results. This is a possible explanation for the relative rDNA increase known to occur in X0 flies, but probably not for the phenomenon of rDNA magnification. — In further studies on DNA from larval diploid tissues, the following findings were made: 1) the Ybb-chromosome carries no rDNA; 2) flies carrying four nucleolus organizers do not tend to lose rDNA, even after eleven generations, and 3) the nucleolus organizer on the wild type Y chromosome may have significantly less rDNA than does that on the corresponding X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号