首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(10):1230-1238
Mitophagy, the selective removal of mitochondria through the autophagic pathway, is involved in cellular mitochondria quality control. Dysfunctional mitochondria can be selectively eliminated through Parkin-mediated mitophagy. Parkin is a ubiquitin E3 ligase that selectively translocates onto impaired mitochondria to initiate mitophagy, and mutations in Parkin have been identified in autosomal recessive forms of Parkinson disease. Here with the use of a genetically encoded, mitochondria-matrix targeting photosensitizer, we established a robust strategy that allows for spatiotemporally controlled initiation of Parkin-mediated mitophagy in single cells with light. The method can specifically target varying numbers of mitochondria into the Parkin-mediated mitophagy pathway for clearance. Combined with live cell imaging, we demonstrated that mitochondria can be cleared by Parkin-mediated mitophagy without juxtanuclear mito-aggresome formation. Autophagy proceeded with the asynchronous appearance of small LC3B-coated structures on Parkin-labeled mitochondria subsections in a nucleation-expansion manner. Our method allows for quantitative measurement on the Parkin-mediated mitophagy process, and can be multiplexed in imaging for higher throughput studies.  相似文献   

2.
Yang JY  Yang WY 《Autophagy》2011,7(10):1230-1238
Mitophagy, the selective removal of mitochondria through the autophagic pathway, is involved in cellular mitochondria quality control. Dysfunctional mitochondria can be selectively eliminated through Parkin-mediated mitophagy. Parkin is a ubiquitin E3 ligase that selectively translocates onto impaired mitochondria to initiate mitophagy, and mutations in Parkin have been identified in autosomal recessive forms of Parkinson disease. Here with the use of a genetically encoded, mitochondria-matrix targeting photosensitizer, we established a robust strategy that allows for spatiotemporally controlled initiation of Parkin-mediated mitophagy in single cells with light. The method can specifically target varying numbers of mitochondria into the Parkin-mediated mitophagy pathway for clearance. Combined with live cell imaging, we demonstrated that mitochondria can be cleared by Parkin-mediated mitophagy without juxtanuclear mito-aggresome formation. Autophagy proceeded with the asynchronous appearance of small LC3B-coated structures on Parkin-labeled mitochondria subsections in a nucleation-expansion manner. Our method allows for quantitative measurement on the Parkin-mediated mitophagy process, and can be multiplexed in imaging for higher throughput studies.  相似文献   

3.
The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome–lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27−/− MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27−/− cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.Subject terms: Tumour-suppressor proteins, Macroautophagy  相似文献   

4.
α-Tubulin acetylation at Lys-40, located on the luminal side of microtubules, has been widely studied and used as a marker for stable microtubules in the cilia and other subcellular structures, but the functional consequences remain perplexing. Recent studies have shown that Mec-17 and its paralog are responsible for α-tubulin acetylation in Caenorhabditis elegans. There is one such protein known as Atat1 (α-tubulin acetyltransferase 1) per higher organism. Zebrafish Atat1 appears to govern embryo development, raising the intriguing possibility that Atat1 is also critical for development in mammals. In addition to Atat1, three other mammalian acetyltransferases, ARD1-NAT1, ELP3, and GCN5, have been shown to acetylate α-tubulin in vitro, so an important question is how these four enzymes contribute to the acetylation in vivo. We demonstrate here that Atat1 is a major α-tubulin acetyltransferase in mice. It is widely expressed in mouse embryos and tissues. Although Atat1-null animals display no overt phenotypes, α-tubulin acetylation is lost in sperm flagella and the dentate gyrus is slightly deformed. Furthermore, human ATAT1 colocalizes on bundled microtubules with doublecortin. These results thus suggest that mouse Atat1 may regulate advanced functions such as learning and memory, thereby shedding novel light on the physiological roles of α-tubulin acetylation in mammals.  相似文献   

5.
The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity.  相似文献   

6.
7.
Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson''s disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson''s disease.  相似文献   

8.
The potential cellular function of the 53-kDa cytosolic form of PINK1 (PINK1-53) is often overlooked because of its rapid degradation by the proteasome upon its production. Although a number of recent studies have suggested various roles for PINK1-53, how this labile PINK1 species attains an adequate expression level to fulfil these roles remains unclear. Here we demonstrated that PINK1-53 is stabilized in the presence of enhanced Lys-63-linked ubiquitination and identified TRAF6-related NF-κB activation as a novel pathway involved in this. We further showed that a mimetic of PINK1-53 promotes mitophagy but, curiously, in apparently healthy mitochondria. We speculate that this “non-selective” form of mitophagy may potentially help to counteract the build-up of reactive oxygen species in cells undergoing oxidative stress and, as such, represent a cytoprotective response.  相似文献   

9.
PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of α-tubulin acetyl transferase (αTAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl α-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.  相似文献   

10.
11.
Mitophagy is an evolutionarily conserved autophagy pathway that selectively degrades mitochondria. Although it is well established that this degradation system contributes to mitochondrial quality and quantity control, mechanisms underlying mitophagy remain largely unknown. Here, we report that protein N-terminal acetyltransferase A (NatA), an enzymatic complex composed of the catalytic subunit Ard1 and the adaptor subunit Nat1, is crucial for mitophagy in yeast. NatA is associated with the ribosome via Nat1 and acetylates the second amino acid residues of nascent polypeptides. Mitophagy, but not bulk autophagy, is strongly suppressed in cells lacking Ard1, Nat1, or both proteins. In addition, loss of NatA enzymatic activity causes impairment of mitochondrial degradation, suggesting that protein N-terminal acetylation by NatA is important for mitophagy. Ard1 and Nat1 mutants exhibited defects in induction of Atg32, a protein essential for mitophagy, and formation of mitochondria-specific autophagosomes. Notably, overexpression of Atg32 partially recovered mitophagy in NatA-null cells, implying that this acetyltransferase participates in mitophagy at least in part via Atg32 induction. Together, our data implicate NatA-mediated protein modification as an early regulatory step crucial for efficient mitophagy.  相似文献   

12.
13.
Mitophagy, or the autophagic degradation of mitochondria, is thought to be important in mitochondrial quality control, and hence in cellular physiology. Defects in mitophagy correlate with late onset pathologies and aging. Here, we discuss recent results that shed light on the interrelationship between mitophagy and mitochondrial dynamics, based on proteomic analyses of protein dynamics in wild-type and mutant cells. These studies show that different mitochondrial matrix proteins undergo mitophagy at different rates, and that the rate differences are affected by mitochondrial dynamics. These results are consistent with models in which phase separation within the mitochondrial matrix leads to unequal segregation of proteins during mitochondrial fission. Repeated fusion and fission cycles may thus lead to “distillation” of components that are destined for degradation.  相似文献   

14.
We have previously demonstrated that the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) induces apoptosis and cell cycle arrest in human leukemia cells. The aim of this study was to evaluate whether CPTH6 is able to affect autophagy. By using several human tumor cell lines with different origins we demonstrated that CPTH6 treatment induced, in a dose-dependent manner, a significant increase in autophagic features, as imaged by electron microscopy, immunoblotting analysis of membrane-bound form of microtubule-associated protein 1 light chain 3 (LC3B-II) levels and by appearance of typical LC3B-II-associated autophagosomal puncta. To gain insights into the molecular mechanisms of elevated markers of autophagy induced by CPTH6 treatment, we silenced the expression of several proteins acting at different steps of autophagy. We found that the effect of CPTH6 on autophagy developed through a noncanonical mechanism that did not require beclin-1-dependent nucleation, but involved Atg-7-mediated elongation of autophagosomal membranes. Strikingly, a combined treatment of CPTH6 with late-stage autophagy inhibitors, such as chloroquine and bafilomycin A1, demonstrates that under basal condition CPTH6 reduces autophagosome turnover through an impairment of their degradation pathway, rather than enhancing autophagosome formation, as confirmed by immunofluorescence experiments. According to these results, CPTH6-induced enhancement of autophagy substrate p62 and NBR1 protein levels confirms a blockage of autophagic cargo degradation. In addition, CPTH6 inhibited autophagosome maturation and compounds having high structural similarities with CPTH6 produced similar effects on the autophagic pathway. Finally, the evidence that CPTH6 treatment decreased α-tubulin acetylation and failed to increase autophagic markers in cells in which acetyltransferase ATAT1 expression was silenced indicates a possible role of α-tubulin acetylation in CPTH6-induced alteration in autophagy. Overall, CPTH6 could be a valuable agent for the treatment of cancer and should be further studied as a possible antineoplastic agent.  相似文献   

15.
Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1‐binding‐deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase‐active ULK1 and a phospho‐mimicking mutant of FUNDC1 rescue mitophagy in ULK1‐null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.  相似文献   

16.
Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects.  相似文献   

17.
The epithelial-to-mesenchymal transition (EMT) is a process by which differentiated epithelial cells reprogram gene expression, lose their junctions and polarity, reorganize their cytoskeleton, increase cell motility and assume a mesenchymal morphology. Despite the critical functions of the microtubule (MT) in cytoskeletal organization, how it participates in EMT induction and maintenance remains poorly understood. Here we report that acetylated α-tubulin, which plays an important role in microtubule (MT) stabilization and cell morphology, can serve as a novel regulator and marker of EMT. A high level of acetylated α-tubulin was correlated with epithelial morphology and it profoundly decreased during TGF-β-induced EMT. We found that TGF-β increased the activity of HDAC6, a major deacetylase of α-tubulin, without affecting its expression levels. Treatment with HDAC6 inhibitor tubacin or TGF-β type I receptor inhibitor SB431542 restored the level of acetylated α-tubulin and consequently blocked EMT. Our results demonstrate that acetylated α-tubulin can serve as a marker of EMT and that HDAC6 represents an important regulator during EMT process.  相似文献   

18.
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin–independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin–independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.  相似文献   

19.
We previously demonstrated that pharmacological induction of autophagy protected against acetaminophen (APAP)-induced liver injury in mice by clearing damaged mitochondria. However, the mechanism for removal of mitochondria by autophagy is unknown. Parkin, an E3 ubiquitin ligase, has been shown to be required for mitophagy induction in cultured mammalian cells following mitochondrial depolarization, but its role in vivo is not clear. The purpose of this study was to investigate the role of Parkin-mediated mitophagy in protection against APAP-induced liver injury. We found that Parkin translocated to mitochondria in mouse livers after APAP treatment followed by mitochondrial protein ubiquitination and mitophagy induction. To our surprise, we found that mitophagy still occurred in Parkin knock-out (KO) mice after APAP treatment based on electron microscopy analysis and Western blot analysis for some mitochondrial proteins, and Parkin KO mice were protected against APAP-induced liver injury compared with wild type mice. Mechanistically, we found that Parkin KO mice had decreased activated c-Jun N-terminal kinase (JNK), increased induction of myeloid leukemia cell differentiation protein (Mcl-1) expression, and increased hepatocyte proliferation after APAP treatment in their livers compared with WT mice. In contrast to chronic deletion of Parkin, acute knockdown of Parkin in mouse livers using adenovirus shRNA reduced mitophagy and Mcl-1 expression but increased JNK activation after APAP administration, which exacerbated APAP-induced liver injury. Therefore, chronic deletion (KO) and acute knockdown of Parkin have differential responses to APAP-induced mitophagy and liver injury in mice.  相似文献   

20.
It is now widely recognized that the tumor microenvironment promotes cancer cell growth and metastasis via changes in cytokine secretion and extra-cellular matrix remodeling. However, the role of tumor stromal cells in providing energy for epithelial cancer cell growth is a newly emerging paradigm. For example, we and others have recently proposed that tumor growth and metastasis is related to an energy imbalance. Host cells produce energy-rich nutrients via catabolism (through autophagy, mitophagy and aerobic glycolysis), which are then transferred to cancer cells, to fuel anabolic tumor growth. Stromal cell derived L-lactate is taken up by cancer cells and is used for mitochondrial oxidative phosphorylation (OXPHOS), to produce ATP efficiently. However, “parasitic” energy transfer may be a more generalized mechanism in cancer biology than previously appreciated. Two recent papers in Science and Nature Medicine now show that lipolysis in host tissues also fuels tumor growth. These studies demonstrate that free fatty acids produced by host cell lipolysis are re-used via β-oxidation (β-OX) in cancer cell mitochondria. Thus, stromal catabolites (such as lactate, ketones, glutamine and free fatty acids) promote tumor growth by acting as high-energy onco-metabolites. As such, host catabolism via autophagy, mitophagy and lipolysis may explain the pathogenesis of cancer-associated cachexia and provides exciting new druggable targets for novel therapeutic interventions. Taken together, these findings also suggest that tumor cells promote their own growth and survival by behaving as a “parasitic organism.” Hence, we propose the term “parasitic cancer metabolism” to describe this type of metabolic-coupling in tumors. Targeting tumor cell mitochondria (OXPHOS and β-OX) would effectively uncouple tumor cells from their hosts, leading to their acute starvation. In this context, we discuss new evidence that high-energy onco-metabolites (produced by the stroma) can confer drug resistance. Importantly, this metabolic chemo-resistance is reversed by blocking OXPHOS in cancer cell mitochondria, with drugs like Metformin, a mitochondrial “poison.” In summary, parasitic cancer metabolism is achieved architecturally by dividing tumor tissue into at least two well-defined opposing “metabolic compartments:” catabolic and anabolic.Key words: mitochondria, cancer metabolism, autophagy, mitophagy, aerobic glycolysis, lipolysis, oxidative phosphorylation, beta-oxidation, Metformin, drug discovery, drug resistance, chemo-resistance, Warburg effect, oncometabolite, parasite, metabolic compartments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号