首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Podocyte injury and depletion are essential events involved in the pathogenesis of diabetic nephropathy (DN). As a terminally differentiated cell, podocyte is restricted in ‘post‐mitosis’ state and unable to regenerate. Re‐entering mitotic phase will cause podocyte disastrous death which is defined as mitotic catastrophe (MC). Murine double minute 2 (MDM2), a cell cycle regulator, is widely expressed in renal resident cells including podocytes. Here, we explore whether MDM2 is involved in podocyte MC during hyperglycaemia. We found aberrant mitotic podocytes with multi‐nucleation in DN patients. In vitro, cultured podocytes treated by high glucose (HG) also showed an up‐regulation of mitotic markers and abnormal mitotic status, accompanied by elevated expression of MDM2. HG exposure forced podocytes to enter into S phase and bypass G2/M checkpoint with enhanced expression of Ki67, cyclin B1, Aurora B and p‐H3. Genetic deletion of MDM2 partly reversed HG‐induced mitotic phase re‐entering of podocytes. Moreover, HG‐induced podocyte injury was alleviated by MDM2 knocking down but not by nutlin‐3a, an inhibitor of MDM2‐p53 interaction. Interestingly, knocking down MDM2 or MDM2 overexpression showed inhibition or activation of Notch1 signalling, respectively. In addition, genetic silencing of Notch1 prevented HG‐mediated podocyte MC. In conclusion, high glucose up‐regulates MDM2 expression and leads to podocyte MC. Notch1 signalling is an essential downstream pathway of MDM2 in mediating HG‐induced MC in podocytes.  相似文献   

2.
The kallikrein-kinin system (KKS) serves as the physiologic counterbalance to the renin-angiotensin system. This study was conducted to examine the changes in the expression of KKS components in podocytes under diabetic conditions and to elucidate the functional role of bradykinin (BK) in diabetes-associated podocyte apoptosis. Thirty-two rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with BK infusion for 6 weeks. Immortalized mouse podocytes were cultured in media containing 5.6 mmol/l glucose (NG), NG + 10(-7) mol/l AII (AII), or 30 mmol/l glucose (HG) with or without 10(-8) mol/l BK. Urinary albumin excretion was significantly higher in DM rats, and this increase was ameliorated by BK. Not only kininogen, kallikrein, and BK B1- and B2-receptor expression but also BK levels were significantly decreased in DM glomeruli and in cultured podocytes exposed to HG. The changes in the expressions of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG- and AII-stimulated podocytes were significantly abrogated by BK. The suppressed KSS within podocytes under diabetic condition was associated with podocyte apoptosis, suggesting that BK may be beneficial in preventing podocyte loss in diabetic nephropathy.  相似文献   

3.
Numerous studies have shown that the NALP3 inflammasome plays an important role in various immune and inflammatory diseases. However, whether the NALP3 inflammasome is involved in the pathogenesis of diabetic nephropathy (DN) is unclear. In our study, we confirmed that high glucose (HG) concentrations induced NALP3 inflammasome activation both in vivo and in vitro. Blocking NALP3 inflammasome activation by NALP3/ASC shRNA and caspase-1 inhibition prevented IL-1β production and eventually attenuated podocyte and glomerular injury under HG conditions. We also found that thioredoxin (TRX)-interacting protein (TXNIP), which is a pro-oxidative stress and pro-inflammatory factor, activated NALP3 inflammasome by interacting with NALP3 in HG-exposed podocytes. Knocking down TXNIP impeded NALP3 inflammasome activation and alleviated podocyte injury caused by HG. In summary, the NALP3 inflammasome mediates podocyte and glomerular injury in DN, moreover, TXNIP participates in the formation and activation of the NALP3 inflammasome in podocytes during DN, which represents a novel mechanism of podocyte and glomerular injury under diabetic conditions.  相似文献   

4.
5.
Podocyte injuries are associated with progression of diabetic nephropathy (DN). Apelin, an adipocyte‐derived peptide, has been reported to be a promoting factor for DN. In this study, we aim to determine whether apelin promotes progression of DN by inducing podocyte dysfunction. kk‐Ay mice were used as models for DN. Apelin and its antagonist, F13A were intraperitoneally administered for 4 weeks, respectively. Renal function and foot process proteins were analysed to evaluate the effects of apelin on kk‐Ay mice and podocytes. Apelin increased albuminuria and decreased podocyte foot process proteins expression in kk‐Ay mice, which is consistent with the results that apelin receptor (APLNR) levels increased in glomeruli of patients or mice with DN. In cultured podocytes, high glucose increased APLNR expression and apelin administration was associated with increased permeability and decreased foot process proteins levels. All these dysfunctions were associated with decreased 26S proteasome activities and increased polyubiquitinated proteins in both kk‐Ay mice and cultured podocytes, as demonstrated by 26S proteasome activation with cyclic adenosine monophosphate (cAMP) or oleuropein. These effects seemed to be related to endoplasmic reticulum (ER) stress, as apelin increased C/EBP homologous protein (CHOP) and peiFα levels while cAMP or oleuropein reduced it in high glucose and apelin treated podocytes. These results suggest that apelin induces podocyte dysfunction in DN through ER stress which was induced by decreased proteasome activities in podocytes.  相似文献   

6.
Podocyte injury and loss are critical events in diabetic nephropathy (DN); however, the underlying molecular mechanisms remain unclear. Here, we demonstrate that asparaginyl endopeptidase (AEP) protects against podocyte injury through modulating the dynamics of the cytoskeleton. AEP was highly upregulated in diabetic glomeruli and hyperglycemic stimuli treated-podocytes; however, AEP gene knockout and its compound inhibitor treatment accelerated DN in streptozotocin-induced diabetic mice, whereas specific induction of AEP in glomerular cells attenuated podocyte injury and renal function deterioration. In vitro, elevated AEP was involved in actin cytoskeleton maintenance and anti-apoptosis effects. Mechanistically, we found that AEP directly cleaved the actin-binding protein cofilin-1 after the asparagine 138 (N138) site. The protein levels of endogenous cofilin-1 1-138 fragments were upregulated in diabetic podocytes, consistent with the changes in AEP levels. Importantly, we found that cofilin-1 1-138 fragments were remarkably unphosphorylated than full-length cofilin-1, indicating the enhanced cytoskeleton maintenance activity of cofilin-1 1-138. Then we validated cofilin-1 1-138 could rescue podocytes from cytoskeleton disarrangement and injury in diabetic conditions. Taken together, our data suggest a protective role of elevated AEP in podocyte injury during DN progression through cleaving cofilin-1 to maintain podocyte cytoskeleton dynamics and defend damage.Subject terms: Cell death, Kidney diseases  相似文献   

7.
W Qiu  Y Zhou  L Jiang  L Fang  L Chen  W Su  R Tan  CY Zhang  X Han  J Yang 《PloS one》2012,7(7):e41391
Diabetic nephropathy (DN) is one of the most common causes of end stage renal disease (ESRD) in China, which requires renal replacement therapy. Recent investigations have suggested an essential role of podocyte injury in the initial stage of DN. This study investigated the potential therapeutic role of genipin, an active extract from a traditional Chinese medicine, on progression of DN in diabetic mice induced by intraperitoneally injection of streptozocin (STZ). In diabetic mice, orally administration of genipin postponed the progression of DN, as demonstrated by ameliorating body weight loss and urine albumin leakage, attenuating glomerular basement membrane thickness, restoring the podocyte expression of podocin and WT1 in diabetic mice. The protective role of genipin on DN is probably through suppressing the up-regulation of mitochondrial uncoupling protein 2 (UCP2) in diabetic kidneys. Meanwhile, through inhibiting the up-regulation of UCP2, genipin restores podocin and WT1 expression in cultured podocytes and attenuates glucose-induced albumin leakage through podocytes monolayer. Therefore, these results revealed that genipin inhibited UCP2 expression and ameliorated podocyte injury in DN mice.  相似文献   

8.
Podocyte injury is associated with albuminuria and the progression of diabetic nephropathy (DN). NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and NOX4 is up-regulated in podocytes in response to high glucose. In the present study, the effects of Salvianolate on DN and its underlying mechanisms were investigated in diabetic db/db mice and human podocytes. We confirmed that the Salvianolate administration exhibited similar beneficial effects as the NOX1/NOX4 inhibitor GKT137831 treated diabetic mice, as reflected by attenuated albuminuria, reduced podocyte loss and mesangial matrix accumulation. We further observed that Salvianolate attenuated the increase of Nox4 protein, NOX4-based NADPH oxidase activity and restored podocyte loss in the diabetic kidney. In human podocytes, NOX4 was predominantly localized to mitochondria and Sal B treatment blocked HG-induced mitochondrial NOX4 derived superoxide generation and thereby ameliorating podocyte apoptosis, which can be abrogated by AMPK knockdown. Therefore, our results suggest that Sal B possesses the reno-protective capabilities in part through AMPK-mediated control of NOX4 expression. Taken together, our results identify that Salvianolate could prevent glucose-induced oxidative podocyte injury through modulation of NOX4 activity in DN and have a novel therapeutic potential for DN.  相似文献   

9.
Thioredoxin-interacting protein (TXNIP) is induced by high glucose (HG), whereupon it acts to inhibit thioredoxin, thereby promoting oxidative stress. We have found that TXNIP knockdown in human renal tubular cells helped prevent the epithelial-to-mesenchymal transition (EMT). Here, we studied the potential effect of TXNIP on podocyte phenotypic alterations in diabetic nephropathy (DN) in vivo and in vitro. In conditionally immortalized mouse podocytes under HG conditions, knocking down TXNIP disrupted EMT, reactive oxygen species (ROS) production, and mammalian target of rapamycin (mTOR) pathway activation. Further, Raptor short hairpin RNA (shRNA), Rictor shRNA, and mTOR specific inhibitor KU-0063794 were used to assess if the mTOR signal pathway is involved in HG-induced EMT in podocytes. We found that Raptor shRNA, Rictor shRNA, and KU-0063794 could all restrain HG-induced EMT and ROS production in podocytes. In addition, antioxidant Tempol or N-acetylcysteine presented a prohibitive effect on HG-induced EMT in podocytes. Streptozotocin was utilized to render equally diabetic in wild-type (WT) control and TXNIP −/− (TKO) mice. Diabetes did not increase levels of 24-hr urinary protein, serum creatinine, blood urea nitrogen, and triglyceride in TXNIP −/− mice. Podocyte phenotypic alterations and podocyte loss were detected in WT but not in TKO diabetic mice. Oxidative stress was also suppressed in diabetic TKO mice relative to WT controls. Also, TXNIP deficiency suppresses the activation of mTOR in glomeruli of streptozotocin-induced diabetic mice. Moreover, TXNIP expression, mTOR activation, Nox1, and Nox4 could be detected in renal biopsy tissues of patients with DN. This suggests that decreased TXNIP could ameliorate phenotypic alterations of podocytes via inhibition of mTOR in DN, highlighting TXNIP as a promising therapeutic target.  相似文献   

10.
Podocyte injury may contribute to the pathogenesis of diabetic nephropathy (DN), but the underlying mechanism of hyperglycemia induced podocyte damage is not fully understood. The Ras GTPase-activating-like protein IQGAP1 is associated to the slit diaphragm proteins and the actin cytoskeleton in podocyte. Here, we studied IQGAP1 expression alterations in human DN biopsies and extracellular signal-regulated kinase (ERK)-dependent pathways of IQGAP1 expression in podocyte under high glucose (HG) media. In vivo, analysis of renal biopsies from patients with DN revealed a significant reduction in IQGAP1 expression compared to controls. In vitro, IQGAP1 mRNA and protein expression were observed to decline under HG media at 48 h. But phosphorylation of ERK1/2 was activated under HG media at 24 h and 48 h. However, HG-induced downregulation of IQGAP1 protein was attenuated by specific ERK1/2 activation inhibitor PD98059. Taken together, these results highlight the importance of IQGAP1 in DN, and suggest that IQGAP1 expression in podocyte under HG media is modulated by the ERK1/2 pathway, which may lead to the future development of therapies targeting IQGAP1 dysfunction in podocytes in DN.  相似文献   

11.
Podocyte apoptosis contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms that mediate hyperglycemia‐induced podocyte apoptosis remain poorly understood. Recent findings indicate that the disruption of the cytoskeleton is related to the podocyte apoptosis. In the present study, we investigated the involvement of nestin, an important cytoskeleton‐associated class VI intermediate filament (IF) protein, in the high glucose (HG)‐induced podocyte apoptosis. Our data showed that HG decreased the expression level of nestin, either mRNA or protein, in a time‐dependent manner in cultured podocytes. Also, through knockdown of nestin expression by miRNA interference, the HG‐induced podocyte apoptotic rate was significantly increased. The expression of cleaved caspase‐3 was also markedly elevated. Considering that nestin is a substrate of cyclin‐dependent kinase 5 (Cdk5), we further assessed the expression of Cdk5 in HG‐treated podocytes. The results showed that HG stimulation increased the protein and mRNA expression of Cdk5 in a time‐dependent manner in cultured mouse podocytes. The protein activator of Cdk5, p35, was also increased in a time‐dependent manner by HG stimulation, and downregulation of Cdk5 by miRNA interference attenuated the nestin reduction in HG‐treated podocytes; the HG‐induced podocyte apoptosis, the increased cleaved caspase‐3 expression and the Bax/Bcl‐2 ratio were all effectively attenuated. These data suggested that nestin, which is dependent on Cdk5 regulation, plays a cytoprotective role in HG‐induced podocyte apoptosis. J. Cell. Biochem. 113: 3186–3196, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Glomerular podocytes are pivotal in maintaining glomerular filtration barrier function. As severe podocyte injury results in proteinuria in patients with diabetic nephropathy, determining the pathogenesis of podocyte injury may contribute to the development of new treatments. We recently showed that autophagy is involved in the pathogenesis of diabetes-related podocyte injury. Insufficient podocyte autophagy and podocyte loss are observed in diabetic patients with massive proteinuria. Podocyte loss and massive proteinuria occur in high-fat diet-induced diabetic mice with podocyte-specific autophagy deficiency, with podocytes of these mice and of diabetic rats having huge damaged lysosomes. Sera from diabetic patients and from rodents with massive proteinuria cause autophagy insufficiency, resulting in lysosome dysfunction and apoptosis of cultured podocytes. These findings suggest the importance of autophagy in maintaining lysosome homeostasis in podocytes under diabetic conditions. Impaired autophagy may be involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy.  相似文献   

13.
Diabetic nephropathy (DN) remains one of the severe complications associated with diabetes mellitus. It is worthwhile to uncover the underlying mechanisms of clinical benefits of human urine-derived stem cells (hUSCs) in the treatment of DN. At present, the clinical benefits associated with hUSCs in the treatment of DN remains unclear. Hence, our study aims to investigate protective effect of hUSC exosome along with microRNA-16-5p (miR-16-5p) on podocytes in DN via vascular endothelial growth factor A (VEGFA). Initially, miR-16-5p was predicated to target VEGFA based on data retrieved from several bioinformatics databases. Notably, dual-luciferase report gene assay provided further verification confirming the prediction. Moreover, our results demonstrated that high glucose (HG) stimulation could inhibit miR-16-5p and promote VEGFA in human podocytes (HPDCs). miR-16-5p in hUSCs was transferred through the exosome pathway to HG-treated HPDCs. The viability and apoptosis rate of podocytes after HG treatment together with expression of the related factors were subsequently determined. The results indicated that miR-16-5p secreted by hUSCs could improve podocyte injury induced by HG. In addition, VEGA silencing could also ameliorate HG-induced podocyte injury. Finally, hUSC exosomes containing overexpressed miR-16-5p were injected into diabetic rats via tail vein, followed by qualification of miR-16-5p and observation on the changes of podocytes, which revealed that overexpressed miR-16-5p in hUSCs conferred protective effects on HPDCs in diabetic rats. Taken together, the present study revealed that overexpressed miR-16-5p in hUSC exosomes could protect HPDCs induced by HG and suppress VEGFA expression and podocytic apoptosis, providing fresh insights for novel treatment of DN.  相似文献   

14.
15.
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)–induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.  相似文献   

16.
Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009)  相似文献   

17.
Diabetic nephropathy is one of the most common complications of diabetes mellitus and the leading cause of end‐stage renal disease. A reduction in podocyte number has been documented in the kidneys of these patients. To identify the molecular changes in podocytes that are primarily caused by high glucose (HG) concentrations and not by secondary alterations (e.g. glomerular hypertension), we investigated the protein expression profiles in a podocyte cell line under long‐term HG exposure (30 versus 10 mM for 2 wk). Proteins were separated by 2‐DE, and we identified 39 different proteins in 48 spots that were differentially regulated by more than twofold in response to HG concentrations using MALDI‐TOF MS and MASCOT software. These proteins belong to several protein classes, including cytoskeletal proteins and specific annexins (annexins III and VI). Downregulation of annexins III and VI by HG concentrations was confirmed by qRT‐PCR, Western blot, and immunostaining, and was also observed in glomeruli of kidney biopsies from patients with diabetic nephropathy. Our data demonstrate that HG concentrations per se are sufficient to strongly modify the protein expression profile of podocytes, the analysis of which contributes to the identification of novel targets involved in diabetic nephropathy.  相似文献   

18.
19.
Renal podocytes form the main filtration barrier possessing unique phenotype maintained by proteins including podocalyxin and nephrin, which are modulated in pathological conditions. In diabetic nephropathy (DN), podocytes become structurally and functionally compromised. Nephrin, a structural backbone protein of the slit diaphragm, acts as regulator of podocyte intracellular signalling with renoprotective role. Vitamin D3 through its receptor, VDR, provides renal protection in DN but limited data exist about its effect on podocytes. In this study, we used isolated rat glomeruli to assess podocalyxin and nephrin expression after treatment with the 1,25‐dihydroxyvitamin D3 analogue paricalcitol in the presence of normal and diabetic glucose levels. The role of 1,25‐dihydroxyvitamin D3 (calcitriol) and its analogue, paricalcitol, on podocyte morphology and survival was also investigated in the streptozotocin (STZ)‐diabetic animal model. In our ex vivo model, glomeruli exhibited high glucose‐mediated down‐regulation of podocalyxin, and nephrin, while paricalcitol reversed the high glucose‐induced decrease of nephrin and podocalyxin expression. Paricalcitol treatment enhanced VDR expression and promoted VDR and RXR co‐localization in the nucleus. Our data also indicated that hyperglycaemia impaired survival of cultured glomeruli and suggested that the implemented nephrin down‐regulation was reversed by paricalcitol treatment, initiating Akt signal transduction which may be involved in glomerular survival. Our findings were further verified in vivo, as in the STZ‐diabetic animal model, calcitriol and paricalcitol treatment resulted in significant amelioration of hyperglycaemia and restoration of nephrin signalling, suggesting that calcitriol and paricalcitol may provide molecular bases for protection against loss of the permselective renal barrier in DN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号