首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
DNA-binding and RNA-binding proteins are usually considered ‘undruggable’ partly due to the lack of an efficient method to identify inhibitors from existing small molecule repositories. Here we report a rapid and sensitive high-throughput screening approach to identify compounds targeting protein–nucleic acids interactions based on protein–DNA or protein–RNA interaction enzyme-linked immunosorbent assays (PDI-ELISA or PRI-ELISA). We validated the PDI-ELISA method using the mammalian high-mobility-group protein AT-hook 2 (HMGA2) as the protein of interest and netropsin as the inhibitor of HMGA2–DNA interactions. With this method we successfully identified several inhibitors and an activator for HMGA2–DNA interactions from a collection of 29 DNA-binding compounds. Guided by this screening excise, we showed that netropsin, the specific inhibitor of HMGA2–DNA interactions, strongly inhibited the differentiation of the mouse pre-adipocyte 3T3-L1 cells into adipocytes, most likely through a mechanism by which the inhibition is through preventing the binding of HMGA2 to the target DNA sequences. This method should be broadly applicable to identify compounds or proteins modulating many DNA-binding or RNA-binding proteins.  相似文献   

5.
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively ‘opening’ these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a ‘kinetic gating’ mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how ‘opening’ is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed ‘open’ undamaged DNA in solution and that such ‘opening’ can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound ‘open’ DNA adopts multiple conformations in solution notwithstanding the DNA’s original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA ‘opening’ of undamaged sites and the dynamic nature of ‘open’ DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.  相似文献   

6.
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.  相似文献   

7.
8.
9.
10.
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.  相似文献   

11.
The CarD-CarG complex controls various cellular processes in the bacterium Myxococcus xanthus including fruiting body development and light-induced carotenogenesis. The CarD N-terminal domain, which defines the large CarD_CdnL_TRCF protein family, binds to CarG, a zinc-associated protein that does not bind DNA. The CarD C-terminal domain resembles eukaryotic high-mobility-group A (HMGA) proteins, and its DNA binding AT hooks specifically recognize the minor groove of appropriately spaced AT-rich tracts. Here, we investigate the determinants of the only known CarD binding site, the one crucial in CarD-CarG regulation of the promoter of the carQRS operon (PQRS), a light-inducible promoter dependent on the extracytoplasmic function (ECF) σ factor CarQ. In vitro, mutating either of the 3-bp AT tracts of this CarD recognition site (TTTCCAGAGCTTT) impaired DNA binding, shifting the AT tracts relative to PQRS had no effect or marginally lowered DNA binding, and replacing the native site by the HMGA1a binding one at the human beta interferon promoter (with longer AT tracts) markedly enhanced DNA binding. In vivo, however, all of these changes deterred PQRS activation in wild-type M. xanthus, as well as in a strain with the CarD-CarG pair replaced by the Anaeromyxobacter dehalogenans CarD-CarG (CarDAd-CarGAd). CarDAd-CarGAd is functionally equivalent to CarD-CarG despite the lower DNA binding affinity in vitro of CarDAd, whose C-terminal domain resembles histone H1 rather than HMGA. We show that CarD physically associates with RNA polymerase (RNAP) specifically via interactions with the RNAP β subunit. Our findings suggest that CarD regulates a light-inducible, ECF σ-dependent promoter by coupling RNAP recruitment and binding to a specific DNA site optimized for affinity and position.  相似文献   

12.
13.
14.
Proteins present in crude nuclear extracts of soybean (Glycine max) plumules were shown to bind in vitro to the 5′ flanking sequences of the soybean heat shock gene Gmhsp17.5E. The specificity of binding activity present in extracts from both control (28°C) and heat shocked (40°C) tissues was demonstrated by reciprocal competition experiments using gel mobility retardation assays. Footprinting experiments using DNase I with crude nuclear extracts indicated that a continuous stretch of 5′ flanking sequences extending from −40 to −153 was protected from digestion in vitro. Nuclear proteins that were partially purified by heparin agarose chromatography were shown to bind specific TATA-proximal sequences containing the heat shock consensus elements (HSEs) (−73 to −49; −107 to −84) and AT-rich motifs (−119 to −153). Other binding sites within AT-rich sequences (−906 to −888, −868 to 863, −859 to 853, and −841 to −830), distal HSE elements (−568 to −532) and a TATA/dyad (−234 to −207) were also identified by DNase I footprinting of TATA-distal probes. DNA binding activities specific for the HSE and AT-rich sequences were present in nuclear extracts from both control and heat shocked tissues. Both types of binding activity were increased after heat shock treatment; HSE binding increased from 1.8- to 2.7-fold, and binding to AT-rich sequences showed an increase from 1.3- to 1.7-fold.  相似文献   

15.
The available reagents for the attachment of functional moieties to plasmid DNA are limiting. Most reagents bind plasmid DNA in a non-sequence- specific manner, with undefined stoichiometry, and affect DNA charge and delivery properties or involve chemical modifications that abolish gene expression. The design and ability of oligonucleotides (ODNs) containing locked nucleic acids (LNAs) to bind supercoiled, double-stranded plasmid DNA in a sequence-specific manner are described for the first time. The main mechanism for LNA ODNs binding plasmid DNA is demonstrated to be by strand displacement. LNA ODNs are more stably bound to plasmid DNA than similar peptide nucleic acid (PNA) ‘clamps’ for procedures such as particle-mediated DNA delivery (gene gun). It is shown that LNA ODNs remain associated with plasmid DNA after cationic lipid-mediated transfection into mammalian cells. LNA ODNs can bind to DNA in a sequence-specific manner so that binding does not interfere with plasmid conformation or gene expression. Attachment of CpG-based immune adjuvants to plasmid by ‘hybrid’ phosphorothioate–LNA ODNs induces tumour necrosis factor-α production in the macrophage cell line RAW264.7. This observation exemplifies an important new, controllable methodology for adding functionality to plasmids for gene delivery and DNA vaccination.  相似文献   

16.
17.
18.
19.
We take advantage of our previous observation that neutral osmolytes can strongly slow down the rate of DNA–protein complex dissociation to develop a method that uses osmotic stress to ‘freeze’ mixtures of DNA–protein complexes and prevent further reaction enabling analysis of the products. We apply this approach to the gel mobility shift assay and use it to modify a self-cleavage assay that uses the nuclease activity of the restriction endonucleases to measure sensitively their specific binding to DNA. At sufficiently high concentrations of neutral osmolytes the cleavage reaction can be triggered at only those DNA fragments with initially bound enzyme. The self-cleavage assay allows measurement of binding equilibrium and kinetics directly in solution avoiding the intrinsic problems of gel mobility shift and filter binding assays while providing the same sensitivity level. Here we compare the self-cleavage and gel mobility shift assays applied to the DNA binding of EcoRI and BamHI restriction endonucleases. Initial results indicate that BamHI dissociation from its specific DNA sequence is strongly linked to water activity with the half-life time of the specific complex increasing ~20-fold from 0 to 1 osmolal betaine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号