首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antifreeze proteins are secreted by winter rye cells in suspension culture   总被引:3,自引:0,他引:3  
During cold-acclimation, winter rye ( Secale cereale L) leaves secrete antifreeze proteins (AFPs) into the apoplast. The AFPs bind to ice and modify its growth, which is easily observed in vitro . However, it is not yet known whether in planta AFPs interact with ice or whether they exert cryoprotective effects. These experiments are difficult to conduct with intact plants, so the aim of this work was to determine whether AFPs are produced in response to cold temperature in cell culture and to examine their function by using suspension cells. We showed that suspension cells secreted three of the six known winter rye AFPs into the culture medium during acclimation at 4°C. These AFPs were not present in washed suspension cells, thus indicating that they are not firmly bound to the cell walls. In order to examine the function of extracellular AFPs, non-acclimated (NA) winter rye suspension cells and protoplasts isolated from NA winter rye leaves were then frozen and thawed in the presence of AFPs extracted from cold-acclimated winter rye leaves. The AFPs had no effect on the survival of NA protoplasts after freezing; however, they lowered the lethal temperature at which 50% of the cells are killed by freezing (LT50) of NA suspension cells by 2.5°C. We conclude that low above-zero temperatures induce winter rye suspension cells to secrete AFPs free in solution where they can protect intact suspension cells, but not protoplasts, from freezing injury, presumably by interacting with extracellular ice.  相似文献   

2.
Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.  相似文献   

3.
Free protoplasts prepared from the epicotyls of nonhardened rye seedlings were subjected to fast and slow freezing on a microscope-adapted thermoelectric stage. During rapid freezing to ?12 °C, ice formation occurred inside the protoplasts causing lethal disruption of cell and membrane organization. Under slow freezing to ?12 °C, ice formation occurred outside the protoplast with accompanying dehydration and contraction of the protoplast. Complete rehydration and recovery of the protoplasts occurred upon thawing after slow freezing. Free protoplasts therefore afford a new system for the study of mechanisms of plant cell freezing injury and resistance free of the complications presented by a cell wall.  相似文献   

4.
Cortical microtubules (MTs) in protoplasts prepared from tobacco (Nicotiana tabacum L.) BY-2 cells were found to be sensitive to cold. However, as the protoplasts regenerated cell walls they became resistant to cold, indicating that the cell wall stabilizes cortical MTs against the effects of cold. Since poly-l-lysine was found to stabilize MTs in protoplasts, we examined extensin, an important polycationic component of the cell wall, and found it also to be effective in stabilizing the MTs of protoplasts. Both extensin isolated from culture filtrates of tobacco BY-2 cells and extensin isolated in a similar way from cultures of tobacco XD-6S cells rendered the cortical MTs in protoplasts resistant to cold. Extensin at 0.1 mg·ml−1 was as effective as the cell wall in this respect. It is probable that extensin in the cell wall plays an important role in stabilizing cortical MTs in tobacco BY-2 cells.  相似文献   

5.
Protoplasts prepared from yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans can take up heavy metals such as Zn2+, Co2+, Cd2+ and Cu2+. In relation to intact cells, the sensitivity of protoplasts to Cu2+ and Cd2+ was increased although chlamydospore protoplasts were more tolerant than yeast-like cell protoplasts. Surface binding of metals was reduced in protoplasts as compared with intact cells and this reduction was particularly evident for chlamydospore protoplasts. At the highest concentrations used, uptake of Zn2+, Co2+ and Cd2+ by yeast-like cell protoplasts was greater than that observed in intact cells which may have been due to toxicity, especially for Cd2+, resulting in increased membrane permeability, though for Zn2+ and Co2+ some barrier effect of the cell wall could not be completely discounted. Chlamydospore protoplasts were capable of intracellular metal uptake, unlike intact chlamydospores, and for Zn2+, uptake appeared to be via a different system less specific than that of the other cell types. For chlamydospores, the use of protoplasts confirmed the importance of the cell wall in preventing entry of metal ions into the cell.  相似文献   

6.
Translocations of chloroplasts induced by blue light were investigated in both leaves and protoplasts isolated from leaf mesophyll of Nicotiana tabacum. In the leaf tissue, the responses of chloroplasts were similar to those observed in other, higher and lower plant species. Weak and strong light induced movements of chloroplasts towards cell walls perpendicular and parallel to the light direction, respectively. Treatment with cytochalasin D, an actin-disturbing agent, blocked the movements. This shows that actin is involved in the motile system of chloroplast translocation in tobacco. By monitoring the response of chloroplasts to light in isolated protoplasts, we addressed the question whether the presence of the cell wall is necessary for the translocations of chloroplasts to occur. In control protoplasts (isolated at room temperature from unstressed leaves), no clear light intensity-dependent changes were observed in chloroplast distribution pattern. In contrast, in protoplasts obtained from plants treated with 4 °C for 8 h the chloroplasts maintained their responsiveness to light. Atomic Force Microscopy was used to measure elastic properties of the protoplasts. Young’s modulus, which reflects rigidity of the material, was 10 times higher for protoplasts of the coldstressed plants as compared to those isolated from the control plants. The rigidity of protoplasts isolated from the plants treated with low temperature was reduced four-fold by exposure to cytochalasin D. It appears that the status of protoplast actin is a factor responsible for elasticity of protoplasts. We speculate that unknown, cold stress-induced factors, maintain the orientational movements due to anchorage of the actin cytoskeleton in the plasma membrane despite the cell wall removal.  相似文献   

7.
We studied the mechanism of cold acclimation of Jerusalem artichoke{Helianthus tuberosus L.) tubers with special reference to therole of the cell wall. During the cold-acclimation process fromSeptember to January, the freezing tolerance of tubers increasedfrom – 2.8°C to –8.4°C (LT50). By contrast,the isolated protoplasts con- stitutively showed a consistenthigh level of freezing toler ance (LT50; below – 25°C)throughout the period. In tuber tissues, freezing injury waseffectively protected by the ex ternal addition of isotonicsolutions. Cryomicroscopic ob servations revealed that tissuecells mounted in isotonic so lutions plasmolyzed upon freezing;tissue cells mounted in water collapsed with a tight attachmentof plasma mem brane to the cell wall. Upon freezing of intacttissues in water to temperatures below the critical range, thecyto plasm was irreversibly acidified as revealed by a fluorescence pH-ratiometry, suggesting that occurrence of detri mentalcellular events leading to permanent cell injury. The freeze-inducedacidification of cytoplasm was also effective ly prevented bythe external addition of isotonic solutions. These results suggestthat the tight attachment of the plas ma membrane to the cellwall during freezing may have a harmful effect on cells, inparticular on the plasma mem brane, possibly due to mechanicalor some sort of chemi cal/physico-chemical interaction withthe cell wall. 1Contribution no. 3946 from The Institute of Low TemperatureScience, Hokkaido University. This research was supported inpart by the grant from Japan Society for the Promotion of Science(JSPS-RFTF 96L00602) 2Present address: Tohoku National Agricultural Experiment Station, Morioka, Iwate, 020-01 Japan  相似文献   

8.
Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

9.
Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells.  相似文献   

10.
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.  相似文献   

11.
Summary Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

12.
The processes of freezing injury in Jerusalem artichoke (Helianthustuberosus L.) tubers were studied using protoplasts isolatedfrom cold-acclimated and deacclimated tubers. Prior to freezing,protoplasts were preloaded with 10 µM fluorescein diacetate(FDA) in an isotonic sorbitol solution. After freeze-thawingat various temperatures, cell viability was evaluated undera fluorescence microscope. In cold-acclimated tubers, more than80% of protoplasts survived freezing to – 20°C. Bycontrast, in deacclimated tubers, the cell survival abruptlydeclined after freezing to temperatures below – 5°C.Thus, freezing tolerance differed significantly between protoplastsisolated from cold-acclimated and deacclimated tubers. Two distincttypes of cell injury, which were caused by either damage toplasma membrane (cell-lysis type) or by damage to the vacuolarmembrane (abnormal-staining type), were observed, dependingon the cold hardiness and freezing temperature. In the cellsof the abnormal-staining type, shrinkage of the central vacuolarspace and simultaneous acidification of the cytoplasmic spacewere characteristically observed immediately before completecell-rehydra-tion during thawing. The decrease in freezing toleranceof protoplasts after deacclimation was suggested to be due mainlyto destabilization of the vacuolar membrane by freeze-induceddehydration stress. 1Contribution no. 3945 from The Institute of Low TemperatureScience, Hokkaido University. This research was supported inpart by the grant from Japan Society for the Promotion of Science(JSPS-RFTF 96L00602) 2Present address: Tohoku National Agricultural Experiment Station, Morioka, Iwate, 020-01 Japan  相似文献   

13.
The optimization of electroporation conditions for maximal uptake of DNA during direct gene transfer experiments is critical to achieve high levels of gene expression in transformed plant cells. Two stains, trypan blue and fluorescein diacetate, have been applied to optimize electroporation conditions for three plant cell types, using different square wave and exponential wave electroporation devices. The different cell types included protoplasts from tobacco, a stable mixotrophic suspension cell culture from soybean with intact cell walls, and germinating pollen from alfalfa and tobacco. Successful electroporation of each of these cell types was obtained, even in the presence of an intact cell wall when conditions were optimized for the electroporation pulse. The optimal field strength for each of these cells differs, protoplasts having the lowest optimal pulse field strength, followed by suspension cells and finally germinating pollen requiring the strongest electroporation pulse. A rapid procedure is described for optimizing electroporation parameters using different types of cells from different plant sources.  相似文献   

14.
Nagao M  Arakawa K  Takezawa D  Fujikawa S 《Planta》2008,227(2):477-489
In nature, intact plant cells are subjected to freezing and can remain frozen for prolonged periods. We assayed the survival of Arabidopsis thaliana leaf cells following freezing and found that short- and long-term exposures produced different types of cellular injury. To identify the cause of these injuries, we examined the ultrastructure of the cell plasma membranes. Our results demonstrate that ultrastructural changes in the plasma membrane due to short-term freezing are associated with interbilayer events, including close apposition of the membranes. In both acclimated and non-acclimated leaf cells, these interbilayer events resulted in “fracture-jump lesions” in the plasma membrane. On the other hand, long-term freezing was associated with the development of extensive protein-free areas caused by the aggregation of intramembrane proteins with consequent vesiculation of the affected membrane regions; this effect was clearly different from the ultrastructural changes induced by interbilayer events. We also found that prolonged exposure of non-acclimated leaf cells to a concentrated electrolyte solution produced effects that were similar to those caused by long-term freezing, suggesting that the ultrastructural changes observed in the plasma membrane following long-term freezing are produced by exposure of the leaf cells to a concentrated electrolyte solution. This study illustrates multiple causes of freezing-induced injury in plant cells and may provide useful information regarding the functional role of the diverse changes that occur during cold acclimation.  相似文献   

15.
Zhang Y  Schläppi M 《Planta》2007,227(1):233-243
Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.  相似文献   

16.
Expression of totipotency and regeneration potentiality of plant protoplasts is a complex developmental phenomenon. The isolation per se is a stress-inducing procedure, during which, among others, active oxygen species (AOS) are generated. Thereafter, protoplasts undergo cell wall reconstitution, cell elongation and re-enter the cell cycle. AOS are known to participate in cell wall cross-linking and recently hydroxyl radicals were proposed to participate in cell wall loosening. On the other hand, if the antioxidant genes and the overall AOS scavenging machinery is not induced, protoplasts may suffer from oxidative stress and peroxidation of membrane lipids. In an effort to identify potential factors contributing to recalcitrance of plant protoplasts, we present the available information, which correlates AOS and oxidative stress with cell wall reconstitution, dedifferentiation, cell cycle progression, and cell death. Reduced antioxidant machinery and altered redox homeostasis seem to affect the regenerating potential of plant protoplasts and inevitably the protoplast fate (re-entry into cell cycle or cell death).  相似文献   

17.
The freezing tolerance and incidence of two forms of freezing injury (expansion-induced lysis and loss of osmotic responsiveness) were determined for protoplasts isolated from rye leaves (Secale cereale L. cv Puma) at various times during cold acclimation. During the first 4 weeks of the cold acclimation period, the LT50 (i.e. the minimum temperature at which 50% of the protoplasts survived) decreased from −5°C to −25°C. In protoplasts isolated from nonacclimated leaves (NA protoplasts), expansion-induced lysis (EIL) was the predominant form of injury at the LT50. However, after only 1 week of cold acclimation, the incidence of EIL was reduced to less than 10% at any subzero temperature; and loss of osmotic responsiveness was the predominant form of injury, regardless of the freezing temperature. Fusion of either NA protoplasts or protoplasts isolated from leaves of seedlings cold acclimated for 1 week (1-week ACC protoplasts) with liposomes of dilinoleoylphosphatidylcholine also decreased the incidence of EIL to less than 10%. Fusion of protoplasts with dilinoleoylphosphatidylcholine diminished the incidence of loss of osmotic responsiveness, but only in NA protoplasts or 1-week ACC protoplasts that were frozen to temperatures over the range of -5 to -10°C. These results suggest that the cold acclimation process, which results in a quantitative increase in freezing resistance, involves several different qualitative changes in the cryobehavior of the plasma membrane.  相似文献   

18.
By measuring uptake of the membrane impermeable dye. phenosafranine, it can be shown that the plasma membrane of intact cells within cell aggregates can be reversibly permeabilized by electroporation. However, the plant cell wall is a barrier to DNA uptake by intact cells, although under certain circumstances expression of DNA, electroporated into intact cells, can be demonstrated. The level of expression is about 20–50 times lower than that obtained by electroporation of protoplasts, and depends on cell wall properties and pretreatments of cell aggregates. In contrast, efficient transformation of whole cells of bacteria and yeasts can be achieved by electroporation. Factors which influence DNA transfer into whole plant cells and the possibility of stable transformation are discussed.  相似文献   

19.
Agrobacterium has been used to transform zero to six-day-old cell wall nonregenerating (CWNR) and cell wall regenerating (CWR) leaf protoplasts of tobacco. Transformed cells were selected by phoytohormone autotrophic growth and were verified by detection of the presence of lysopine dehydrogenase. Transformation frequencies in CWNR protoplasts were at least as high as those in CWR protoplasts, indicating that a plant cell wall is not required for the process of crown gall tumorigenesis. Transformation frequencies were highest in two-day-old protoplasts. This age coincides with the onset of DNA synthesis and the first mitosis within the cell populations. We suggest that the initiation of cell cycle activity may be important for the transformation process.  相似文献   

20.
Freezing tolerance of isolated protoplasts of three wheat, varieties which differ from each other in cold resistance has been measured. The results obtained in the present study indicate that the survival percentage of wheat protoplasts after freezing treatment is indirect correlation with the cold resistance of its varieties. It is discussed that the change in plasmolemma plays a role in the mechanism of chilling injury and cold resistance of plants, and the results obtained may be used as an indicator for determining the cold resistance of the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号