共查询到20条相似文献,搜索用时 0 毫秒
1.
Douglas Gurian-Sherman Steven E. Lindow Nickolas J. Panopoulos 《Molecular microbiology》1993,9(2):383-391
Cells of ice nucleation active bacterial species catalyse ice formation over the temperature range of -2 to -12°C. Current models of ice nucleus structure associate the size of ice nucleation protein aggregates with the temperature at which they catalyse ice formation. To better define the structural features of ice nucleation proteins responsible for the functional heterogeneity of ice nuclei within a genetically homogeneous collection of cells we used in vitro chemical mutagenesis to isolate mutants with reduced ability to nucleate ice at warm assay temperatures but which retain normal or near normal nucleation activity at cold temperatures (WIND, i.e. w arm i ce n ucleus-d eficient mutants). Nearly half of the mutants obtained after hydroxylamine mutagenesis of the iceE gene from Erwinia herbicola had this phenotype. The phenotypes and location of lesions on the genetic map of iceE were determined for a number of mutants. All WIND mutations were restricted to the portion of iceE encoding the repetitive region of the poty peptide. DNA sequencing of two WIND mutants revealed single nucleotide substitutions changing a conserved serine or glycine residue to phenylalanine and serine, respectively. The implications of these findings in structure/function models for the ice nucleation protein are discussed. 相似文献
2.
Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. 总被引:2,自引:2,他引:2 下载免费PDF全文
Antibodies were raised against the InaW protein, the product of the ice nucleation gene of Pseudomonas fluorescens MS1650, after protein isolation from an Escherichia coli clone. On Western blots (immunoblots), these antibodies recognized InaW protein and InaZ protein (the ice nucleation gene product of Pseudomonas syringae S203), produced by both E. coli clones and the source organisms. The InaZ protein appeared in P. syringae S203 during stationary phase; its appearance was correlated with the appearance of the ice nucleation-active phenotype. In contrast, the InaW protein occurred at relatively constant levels throughout the growth phases of P. fluorescens MS1650; the ice nucleation activity was also constant. Western analyses of membrane preparations of P. syringae PS31 and Erwinia herbicola MS3000 with this antibody revealed proteins which were synthesized with development of the nucleating phenotype. In these species the presence or absence of the nucleating phenotype was controlled by manipulation of culture conditions. In all nucleation-positive cultures examined, cross-reacting low-molecular-weight bands were observed; these bands appeared to be products of proteolytic degradation of ice nucleation proteins. The proteolysis pattern of InaZ protein seen on Western blots showed a periodic pattern of fragment sizes, suggesting a highly repetitive site for protease action. A periodic primary structure is predicted by the DNA sequence of the inaZ gene. 相似文献
3.
The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae 总被引:3,自引:0,他引:3
The consensus sequence of three bacterial ice nucleation proteins was determined by extrapolation from the nucleotide (nt) sequences of three ice nucleation-encoding genes, iceE (presented here), inaW and inaZ. The three proteins possess considerable similarity, so that a preferred amino acid is shown in most positions of the consensus. The corresponding genes show considerable divergence in the third nt positions of synonymous codons, suggesting that the proteins' conserved features have been maintained by selection. Therefore, the consensus sequence is likely to represent the components of primary structure most important to the ice nucleation function. 相似文献
4.
Several ice-nucleating bacterial strains, including Erwinia herbicola, Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for their ability to shed ice nuclei into the growth medium. Only E. herbicola isolates shed cell-free ice nuclei active at -2 to -10 degrees C. These cell-free nuclei exhibited a freezing spectrum similar to that of ice nuclei found on whole cells, both above and below -5 degrees C. Partially purified cell-free nuclei were examined by density gradient centrifugation, chemical and enzymatic probes, and electron microscopy. Ice-nucleating activity in these cell-free preparations was associated with outer membrane vesicles shed by cells and was sensitive to protein-modifying reagents. 相似文献
5.
The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola. 相似文献
6.
To evaluate the suitability of using ice nucleation active (INA) bacteria for the biological control of insect pests, the supercooling point (SCP) of larvae of mulberry pyralid, Glyphodes duplicalis, and silkworm, Bombyx mori, ingesting INA strains of Erwinia (Pantoea) ananas and Pseudomonas syringae was determined. Mean SCP of the guts of silkworm larvae ingesting INA strains of E. ananas ranged from -2.5 to -2.8 degrees C, being 5 degrees C higher than that in control treatments. Similarly, mean SCP of mulberry pyralid larvae ingesting INA strain of E. ananas, which can grow well in the gut, was -4.7 degrees C at 3 days after treatment, being 6.5 degrees C higher than that in control treatments. On the other hand, mean SCP of the larvae-ingesting INA strain of P. syringae, which cannot grow in the gut, was -9.0 degrees C at 3 days after treatment, rising by only 2.5 degrees C higher than that in the control treatments. In addition, more than 80% of the larvae of mulberry pyralid ingesting the INA strain of E. ananas froze and eventually died when exposed to -6 degrees C for 18 h, while only 36% of the larvae ingesting the INA strain of P. syringae, or approximately 20% of the control larvae, froze and died. Thus, the gut colonization by INA strains of E. ananas reduced remarkably the cold hardiness of the insects. These findings suggest that INA strains of E. ananas could be effective as a potential biological control agent of insect pests. 相似文献
7.
A 6.7 kb DNA fragment containing the pigment genes of Erwinia herbicola Eho13 has been cloned into Escherichia coli. These genes were chromosomally encoded in E. herbicola. The entire DNA fragment could be divided into at least three regions. Deletions in Region I resulted in a non-pigmented phenotype, a deletion in Region II resulted in a pink/yellow phenotype, deletions in Region III resulted in either a pink or a non-pigmented phenotype. Tn1000 insertions in the same regions, however, gave different phenotypes. Insertions in Region II produced a pink phenotype. Insertions in Region III resulted in either a light-yellow or a non-pigmented phenotype. Minicell studies showed that the 6.7 kb DNA fragment encoded at least five proteins (50 kDa, 42 kDa, 36 kDa, 35 kDa and 34 kDa). A 2.7 kb HindIII deletion in Region I caused the disappearance of these proteins, suggesting that this 2.7 kb fragment may play a regulatory role in pigment synthesis. Our results also showed that a 4.1 kb EcoRV fragment consisted of Region I and a part of Region II complemented a pink/yellow clone of Eho10 (pHL545), suggesting that the pigments of Eho13 and Eho10 were probably similar or identical. 相似文献
8.
《Journal of Fermentation and Bioengineering》1989,67(3):143-147
An ice-nucleating bacterium, KUIN-2, was isolated from carrot leaves. The ice-nucleating bacterium was found in the white colony group. KUIN-2 was identified as Pseudomonas viridiflava from its taxonomic characteristics. When KUIN-2 was cultured aerobically in a medium consisting of Trypticase soy broth (pH 6.0) for 24 h at 18°C, the ice-nucleating activity of KUIN-2 cells was obtained. Ice nucleation was detected at −2.8°C in cell suspensions (1.4 × 108 cells/ml) of KUIN-2. The nucleation frequency of KUIN-2 was greatly inhibited by the addition of urea or N-ethylmaleimide. 相似文献
9.
Two strains of Erwinia herbicola effective in the biocontrol of E. amylovora, the etiological agent of fire blight, were screened for proferrioxamine siderophores by on-line liquid chromatography-electrospray mass spectrometry (LC-MS). Type strains of E. herbicola and Pantoea species were included in this study for taxonomic comparisons. Proferrioxamine profiles similar to that previously described for E. amylovora, including tri- and tetrameric hydroxamates and diaminopropane-containing proferrioxamines, were observed for P. agglomerans, but not for other E. herbicola-like species. Biocontrol activity was not correlated with proferrioxamine synthesis. The results of this study are consistent with the notion that some, but not all, biocontrol strains may inhibit E. amylovora via competition for iron. Further studies into the link between biocontrol of fire blight and siderophores are thus warranted. This study also revealed limitations of standard nutrient utilization and fatty acid profile analyses for the differentiation of P. agglomerans, P. dispersa and other E. herbicola-like species from each other. Given these limitations, LC-MS may become a much needed additional diagnostic tool for the identification of E. herbicola-like strains at the species level. 相似文献
10.
11.
H M Chao 《The Journal of biological chemistry》1976,251(8):2330-2333
A nucleoside phosphotransferase, which catalyzes the phosphorylation of nucleosides to nucleotides by low energy phosphate esters, has been isolated and purified 500-fold from the membrane fraction of Erwinia herbicola. Its most noteworthy difference from other enzymes of this class is that it is membrane bound and can be isolated and handled only in the presence of a detergent. With a ribonucleoside acceptor, adenosine, the reaction product is exclusively 5'-AMP; with deoxyadenosine, 5'- and 3'-nucleotide products appear in the approximate ratio of 2:1, respectively. The enzyme has no detectable phosphatase activity with the best phosphate donors, 5'-dAMP and 5'-dTMP, and very little with less active donors, such as p-nitrophenyl phosphate. This phosphotransferase should be a useful agent for preparing 5'-nucleotides from unusual synthetic bases. 相似文献
12.
The genes coding for yellow pigment production in Erwinia herbicola Eho10 (ATCC 39368) were cloned and localized to a 12.4-kilobase (kb) chromosomal fragment. A 2.3-kb AvaI deletion in the cloned fragment resulted in the production of a pink-yellow pigment, a possible precursor of the yellow pigment. Production of yellow pigment in both E. herbicola Eho10 and pigmented Escherichia coli clones was inhibited by glucose. When the pigment genes were transformed into a cya (adenylate cyclase) E. coli mutant, no expression was observed unless exogenous cyclic AMP was provided, which suggests that cyclic AMP is involved in the regulation of pigment gene expression. In E. coli minicells, the 12.4-kb fragment specified the synthesis of at least seven polypeptides. The 2.3-kb AvaI deletion resulted in the loss of a 37K polypeptide and the appearance of a polypeptide of 40 kilodaltons (40K polypeptide). The synthesis of the 37K polypeptide, which appears to be required for yellow pigment production, was not repressed by the presence of glucose in the culture medium, as was the synthesis of other polypeptides specified by the 12.4-kb fragment, suggesting that there are at least two types of gene regulation involved in yellow pigment synthesis. DNA hybridization studies indicated that different yellow pigment genes exist among different E. herbicola strains. None of six pigmented plant pathogenic bacteria examined, Agrobacterium tumefaciens C58, Cornyebacterium flaccumfaciens 1D2, Erwinia rubrifaciens 6D364, Pseudomonas syringae ATCC 19310, Xanthomonas campestris 25D11, and "Xanthomonas oryzae" 17D54, exhibited homology with the cloned pigment genes. 相似文献
13.
14.
The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon. 相似文献
15.
Hidehiko Kumagai Nobukazu Kashima Hiroshi Torii Hideaki Yamada Hitoshi Enei Shinji Okumuea 《Bioscience, biotechnology, and biochemistry》2013,77(3):472-482
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor. 相似文献
16.
The ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686 (INA(+)) responds to a decrease in temperature by the induction of proteins. The pattern of protein bands from strain IFO12686 following a shift in temperature from 30 to 12 degrees C could be divided into four major groups: (1) increasing protein bands, (2) decreasing protein bands, (3) increasing--decreasing protein bands, and (4) almost constant protein bands. We identified a cryoprotective function in the increasing protein band found in strain IFO12686. The increasing protein bands that followed a reduction in temperature were considered to have an important role in cold acclimation or adaptation. We showed that these proteins possessed cryoprotective activity when tested against the freeze-labile enzyme lactate dehydrogenase. The strain IFO12686 had greater cryotolerance than Pa. agglomerans IAM1595 (INA(-)), and the degree of cryotolerance was increased by cold acclimation. 相似文献
17.
Antibodies raised against a synthetic peptide specifically detect ice nucleation proteins from Pseudomonas species in Western blots. In immunofluorescent staining of whole bacteria, the antibodies reveal the protein in clusters, as indicated by patches of intense fluorescence in Escherichia coli cells heterologously expressing Pseudomonas ice nucleation genes. The abundance, size, and brightness of the clusters vary considerably from cell to cell. Their varying sizes may explain the variability in activity of bacterial ice nuclei. Growth at lower temperatures produces more ice nuclei, and gives brighter and more frequent patches, than growth at 37 degrees C. The observed clustering may thus reflect formation of functional ice nucleation sites in vivo. The presence of ice nucleation protein in clusters is also correlated with alterations in cell morphology. 相似文献
18.
19.
Chemical and biological properties of the ice nucleating sites of Pseudomonas syringae, strain C-9, and Erwinia herbicola have been characterized. The ice nucleating activity (INA) for both bacteria was unchanged in buffers ranging from pH 5.0 to 9.2, suggesting that there were no essential groups for which a change in charge in this range was critical. The INA of both bacteria was also unaffected by the addition of metal chelating compounds. Borate compounds and certain lectins markedly inhibited the INA of both types of bacterial cells. Butyl borate was not an inhibitor, but borate, phenyl borate, and m-nitrophenyl borate were, in order, increasingly potent inhibitors. These compounds have a similar order of affinity for cis hydroxyls, particularly for those found on sugars. Lentil lectin and fava bean lectin, which have binding sites for mannose or glucose, inhibited the INA of both bacteria. All other lectins examined had no effect. The inhibition of INA by these two types of reagents indicate that sugar-like groups are at or near the ice nucleating site. Sulfhydryl reagents were potent inhibitors of the INA of both bacteria. When treated with N-ethylmaleimide, p-hydroxymercuribenzoate, or iodoacetamide, the INA was irreversibly inhibited by 99%. The kinetics of inactivation with N-ethylmaleimide suggested that E. herbicola cells have at least two separate ice nucleating sites, whereas P. syringae cells have possibly four or more separate sites. The effect of infection with a virulent phage (Erh 1) on the INA of E. herbicola was examined. After multiple infection of a bacterial culture the INA was unchanged until 40 to 45 min, which was midway through the 95-min latent period. At that time, the INA activity began falling and 99% of the INA was lost by 55 min after infection, well before any cells had lysed. This decrease in INA before lysis is attributed to phage-induced changes in the cell wall. 相似文献
20.
A novel ice-nucleating bacterium (INB) was isolated from Ross Island, Antarctica. INBs could be isolated more frequently than was generally thought. INB strain IN-74 was found in the white colony group. Strain IN-74 was identified from its taxonomic characteristics as a novel INB, Pseudomonas antarctica IN-74. When strain IN-74 was cultured aerobically in a medium consisting of the ice-nucleating broth (pH 7.0) for 6 days at 4 degrees C, the ice-nucleating activity of strain IN-74 cells was obtained. Strain IN-74 cells produced ice nuclei only at extremely low growth temperatures. The nuclei appeared to be less thermolabile than those of INB Pseudomonas fluorescens KUIN-1. The freezing difference spectra in D2O and H2O at ice-nucleating temperature for strain IN-74 cells and conventional INBs (Pseudomonas fluorescens KUIN-1, Pseudomonas viridiflava KUIN-2, and Pseudomonas syringae C-9) exhibited different curves. 相似文献