首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical properties of the egg of the medaka, Oryzias latipes, were studied before, during, and after fertilization. The resting potential of the unfertilized egg averaged ?39 ± 9 mV in Yamamoto's Ringers (Y. Ringers), but 20% of the values were between ?50 and ?60 mV. Fertilization triggers a small depolarization of 4 ± 3 mV in 10% Y. Ringers with an average duration of 20 ± 10 sec. The amplitude of this depolarization is independent of [Na+]o, [Ca2+]o, and [Cl?]o, so it appears to be due to a nonspecific leak triggered by sperm-egg fusion. The depolarization is followed by a longer hyperpolarizing phase with an average amplitude of 31 ± 12 mV. Recovery from this hyperpolarization has a fast phase lasting 155 ± 18 sec, followed by a slower phase which reaches a steady average membrane potential of ?19 ± 1 mV by 9 min after fertilization. The membrane resistance falls 10-fold during the first 2 min after fertilization, from 40 (1520 kΩ-cm2) to 3 MΩ. This is largely due to an increase in the K+ conductance. At the peak of the hyperpolarization, the membrane potential exhibits a 28 mV/decade [K+]o dependence and a 6 mV/decade [Na+]o dependence. The membrane resistance slowly recovers over the next 8 min to a value about 30% larger than before fertilization. The relation of current vs voltage was linear before, during, and after fertilization and indicated a reversal potential of ?98 ± 20 mV for the hyperpolarization peak. The egg's capacitance averaged 0.04 ± 0.01 μF (0.9 μF/cm2) before fertilization and approximately doubles within 90 sec after fertilization. It then decreases over a 9-min period, reaching a value 25% smaller than before fertilization.  相似文献   

2.
Ionic currents in two strains of rat anterior pituitary tumor cells   总被引:14,自引:7,他引:7       下载免费PDF全文
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-dependent potassium current, and comparable amounts of calcium current. Voltage-dependent inward sodium current activated and inactivated rapidly and was blocked by tetrodotoxin. A slower-activating voltage-dependent inward calcium current was blocked by cobalt, manganese, nickel, zinc, or cadmium. Barium was substituted for calcium as the inward current carrier. Calcium tail currents decay with two exponential components. The rate constant for the slower component is voltage dependent, while the faster rate constant is independent of voltage. An analysis of tail current envelopes under conditions of controlled ionic gradients suggests that much of the apparent decline of calcium currents arises from an opposing outward current of low cationic selectivity. Voltage-dependent outward potassium current activated rapidly and inactivated slowly. A second outward current, the calcium-activated potassium current, activated slowly and did not appear to reach steady state with 185-ms voltage pulses. This slowly activating outward current is sensitive to external cobalt and cadmium and to the internal concentration of calcium. Tetraethylammonium and 4-aminopyridine block the majority of these outward currents. Our studies reveal a variety of macroscopic ionic currents that could play a role in the initiation and short-term maintenance of hormone secretion, but suggest that sodium channels probably do not make a major contribution.  相似文献   

3.
Eggs of the ascidian Ciona intestinalis were loaded with the calcium indicator fura-2 via whole-cell clamp electrodes and changes in cytoplasmic calcium and cell currents were monitored during fertilization either in separate eggs or simultaneously in the same egg. The first indication of egg activation was the fertilization current; which reached peak values around 1 nA after 30 s. A wave of elevated calcium was detectable between 5 s and 30 s (mean = 21 s) after the start of the fertilization current. This wave spread across the egg increasing cytoplasmic calcium levels to at least 10 microM. When the fertilization current and calcium wave were complete and cytoplasmic calcium levels were decreasing to prefertilization levels, a cortical contraction wave spread across the egg surface. In eggs showing normal fertilization current, the calcium wave and the contraction wave were in the same direction. A region of elevated calcium persisted at the animal pole. Changing cytoplasmic calcium levels locally by local application of ionophore A23187 caused a contraction wave originating at the site of ionophore application. Increasing cytoplasmic calcium uniformly by facilitating calcium entry through voltage-regulated channels did not result in a contraction wave.  相似文献   

4.
Eggs of Xenopus laevis were injected with a calcium buffer before insemination, to examine the effect of preventing or suppressing the sperm-induced increase in intracellular calcium on the fertilization potential, exocytosis, and pronuclear formation. Microinjection of BAPTA [(1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)] at concentrations between 0.2 and 0.7 mM usually suppressed the fertilization potential to a series of transient depolarizations. The fertilization potential was completely inhibited when the final concentration of BAPTA in the egg was greater than 0.7 mM. These observations support the hypothesis that activation of the chloride conductance responsible for the fertilization potential depends on an increase in intracellular calcium. Exocytosis of cortical granules and elevation of the fertilization envelope were prevented by injecting BAPTA at concentrations greater than 0.2 mM. Injection of BAPTA to suppress the rise in calcium did not inhibit sperm entry and BAPTA-injected eggs were highly polyspermic. Examination by light and electron microscopy revealed that sperm decondensation and pronuclear formation were prevented by injection of the calcium buffer before insemination.  相似文献   

5.
The surface proteins of eggs from Stronglocentrotus purpuratus were labeled with 125I by lactoperoxidase-catalyzed iodination. The eggs were examined after solubilization and disaggregation in sodium dodecyl sulphate (SDS) by electrophoresis on SDS-polyacrylamide slab-gels. Seventy-five percent of the label was found in material with a molecular weight greater than 130,000. About 5% of the radioactivity was excluded from the gels. Upon fertilization, embryos show a redistribution of the radioactively labeled species. There is a decrease in the amount of very high molecular weight material but an increase (35–40%) in material excluded from the gel. In addition, new radioactive bands of lower molecular weight are found. This change of distribution in the radioactive bands is blocked by inclusion of soybean trypsin inhibitor either before or immediately after fertilization, which completely inhibits the cortical granule protease. The disappearance of high molecular weight components is prevented by treatment of the eggs with procaine during fertilization, although the appearance of low molecular weight bands (approximately 20,000 and 30,000) is not completely blocked by procaine treatment. Parthenogenic activation of eggs by butyric acid or partial metabolic activation by ammonia each leads to changes in the egg surface proteins which are similar but not identical to those seen after fertilization. The data suggest that the labeling occurs on the vitelline membrane, plasma membrane and jelly layer. The possible significance of limited proteolysis in fertilization is discussed.  相似文献   

6.
Ca2 作为植物生长发育过程中的必需元素之一,通过特定的时、空分布参与调控植物生长发育的诸多发育过程[1].中央细胞是胚囊中体积最大的细胞,与卵器共同构成雌性生殖单位.在被子植物双受精作用中,卵细胞与一个精细胞融合形成胚,中央细胞与另一个精细胞融合并发育成胚乳,为胚的发育提供营养.  相似文献   

7.
The role of calcium in cortical granule exocytosis and activation of the cell cycle at fertilization was examined in the mouse egg using the calcium chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) and the fluorescent calcium indicator fluo-3. BAPTA and fluo-3 were introduced into zona-free mouse eggs by a 30-min incubation with 0.01-50 microM BAPTA acetoxymethyl ester (AM) and/or 1-20 microM fluo-3 AM prior to in vitro fertilization. Incubation of eggs in greater than or equal to 5.0 microM BAPTA AM inhibited cortical granule exocytosis in all cases. Introduction of the calcium chelator into the egg blocked second polar body formation at greater than or equal to 1.0 microM BAPTA AM. Sperm entry occurred in all eggs regardless of the BAPTA AM concentration. Sperm induce a large transient increase in calcium lasting 2.3 +/- 0.6 min, followed by repetitive transients lasting 0.5 +/- 0.1 min and occurring at 3.4 +/- 1.4-min intervals. Incubation with greater than or equal to 5.0 microM BAPTA AM inhibited all calcium transients. Introduction of BAPTA also inhibited calcium transients, exocytosis, and the resumption of meiosis following application of the calcium ionophore A23187 or SrCl2, which activate eggs. These results demonstrate that the calcium increase at fertilization is required for cortical granule exocytosis and resumption of the cell cycle in a mammalian egg.  相似文献   

8.
The fertilization potential of the egg of the nemertean worm Cerebratulus lacteus consisted of a rapid shift from a resting potential of about -65 mV to a peak of about +44 mV; the peak was followed by a positive plateau at about +24 mV, lasting an average of 80 min. Reduction of extracellular calcium reduced the peak of the fertilization potential, indicating that the peak resulted from a calcium conductance, while reduction of extracellular sodium reduced the plateau potential, indicating that the plateau resulted from a sodium conductance. Microinjection of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) or 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)/CaBAPTA buffers, having a free calcium concentration of less than or equal to about 0.1 microM lowered the fertilization potential plateau. Injection of a BAPTA/CaBAPTA mixture with a free calcium concentration of about 1 microM resulted in a prolonged positive potential at the level of the fertilization potential plateau. These observations indicated that the fertilization potential of the Cerebratulus egg depended on a calcium-activated sodium conductance. The plateau potential was reduced little, if any, when calcium-free seawater was perfused through the bath during the fertilization potential; nor was it reduced in seawater containing cadmium. These observations suggested the possibility that intracellular calcium stores could be important in producing the fertilization potential.  相似文献   

9.
Membrane ionic currents of the GH3 pituitary cell line have been studied using voltage clamp techniques. The inward current is completely blocked by cobalt (Co2+) ions and appeared to be carried by calcium ions. Three outward currents can be differentiated on the ground of kinetics and pharmacological studies: a transient current blocked by 4-aminopyridine (4 AP) and two delayed outward current which are voltage dependent. One is blocked by tetraethylammonium (TEA); the second is blocked by Co2+ and represents a calcium-activated potassium conductance.  相似文献   

10.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

11.
Fertilization of the mammalian egg initiates numerous biochemical and structural changes which remodel the egg into a single-celled zygote. To date, the most extensively studied phenomenon of fertilization in virtually all species has been the relationship between sperm penetration and the induction of the initial rise in intracellular-free calcium ([Ca2+]i) concentration within the egg. In contrast, relatively few studies have focused on the biochemical events following this rise in calcium, and even fewer studies have directly linked the biochemical events to the structural changes which must ensue for proper development of the embryo. In this study, we exploited recently developed technologies to investigate the action of protein kinase C (PKC), a presumed downstream transducer of the initial rise in [Ca2+]i, during fertilization and artificial activation with calcium ionophore or phorbol 12-myristate 13-acetate (PMA). The newly developed myristoylated PKC pseudosubstrate (myrPKCΨ) was used to specifically inhibit PKC, thereby averting the trauma of injecting the egg with nonmyristoylated PKCΨ. Following fertilization, eggs which were pretreated with myrPKCΨ were not capable of forming a second polar body and pronuclear formation was significantly inhibited. Spatial and temporal localization of PKC using confocal microscopy to visualize the PKC reporter dye, Rim-1, demonstrated localization of PKC to the lateral aspects of the forming second polar body after fertilization, or after artificial activation with calcium ionophore or PMA. In vivo biochemical analysis of eggs which were fertilized or artificially activated demonstrated that PKC activity rose at the same time (40 min) as the second polar body formed and then subsided over the next 5 hr post activation. From these data, we conclude that PKC plays an integral role in directing the transformation from egg to embryo. Mol. Reprod. Dev. 46:587–601, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The wave of activation current in the Xenopus egg   总被引:8,自引:0,他引:8  
A ring-shaped wave of inward current, the activation current, propagates across the Xenopus egg from the site of activation during the positive phase of the activation or fertilization potential. This activation current wave is due to an increased chloride conductance and reflects the propagated of the ionic channels responsible for the fertilization potential. These channels are present in the animal and vegetal hemispheres; however, the magnitude of the activation current is 6-7 times greater in the animal hemisphere. Outward current of a smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of activation where the current is first inward. The inward current wave is detected in all eggs activated by sperm and in eggs activated by pricking with a sharp needle, by application of the Ca2+ ionophore, A23187, and by intracellular iontophoresis of Ca2+ or inositol 1,4,5-trisphosphate. Reduction of the inward current by TMB-8, which blocks intracellular calcium release in some cells, suggests that the activation current channels are calcium sensitive and that the current wave is concomitant with a wave of increased intracellular calcium initiated by sperm-egg interaction. The wave of cortical granule exocytosis and two or more contraction waves follow the current wave.  相似文献   

13.
The time course of uridine uptake by eggs and embryos of the tunicate Ascidia callosa was studied using 5-min pulses of [3H]uridine at intervals from the unfertilized egg to the 16-cell embryo. The unfertilized egg is permeable to uridine, but 5 min after fertilization uptake begins to drop, reaching a minimum of 30% of the unfertilized rate about 30 min after fertilization. At 45 min after fertilization, permeability begins to increase, reaching a plateau about 3 hr after fertilization at the two-cell stage. The initial decrease in permeability occurs at first polar body production; the increase at 45 min is coincident with the formation of the second polar body. Substrate concentration experiments up to 200 μM show strict concentration dependence for uridine uptake. The inhibitors p-chloromercuribenzoate (PCMB), dinitrophenol (DNP), and thymidine have little, if any effect on permeability. Cold (?1°C) and Na+-free sea water inhibit uptake 60% during all three developmental stages. The changes in permeability may be indicative of temporary reorganization of the plasma membrane during the fertilization-initiated completion of meiosis.  相似文献   

14.
侧金盏花双受精进程研究   总被引:1,自引:0,他引:1  
孙颖  王蕾  杨雪  王阿香  何淼 《植物学报》2017,52(4):480-486
应用荧光显微镜和常规石蜡切片观察侧金盏花(Adonis amurensis)花粉管生长和受精作用的全过程。结果表明,侧金盏花为湿型柱头,授粉后1–2小时,花粉粒与柱头识别;授粉后2–4小时,花粉粒萌发;授粉后4–6小时,花粉管进入柱头。侧金盏花的受精模式为珠孔受精,授粉后10小时,精子被释放;授粉后30小时,精核与卵核融合;授粉后7天合子形成;授粉后15天合子进入分裂期,合子休眠期为8天。2个极核在受精前不融合,授粉后14–16小时,精核与1个极核融合;授粉后20–22小时,受精极核与另1个极核融合形成初生胚乳核。双受精作用属于有丝分裂前配子融合型。通过实验确定了侧金盏花受精过程的雌雄性细胞融合形态变化与相应经历的时间及其合子休眠期。研究结果丰富了侧金盏花胚胎学资料,对其今后的育种及转基因研究具有重要意义。  相似文献   

15.
Using an ultrasensitive extracellular vibrating electrode, I have studied the membrane-generated electrical currents around the egg of the brown alga, Pelvetia, between fertilization and germination. During this period, the egg chooses an elongation axis and moves wall-precursor vesicles to the prospective growth region where they are secreted. This results in visible oöplasmic segregation which appears under the light microscope as a 1- to 2-μm-thick clear band at the cortex of the growth region. A steady electrical current enters a small region of the membrane and leaves the remainder of the egg's surface as early as 30 min after fertilization. This early spatial current pattern is unstable and shifts position, often with more than one inward current region. However, current enters mainly on the side where germination will occur and is usually largest at the prospective cortical clearing region. The average measured early current density is 0.06 μA/cm2 at 50 μm from the egg's surface, implying a surface current density of between 0.2 and 1 μA/cm2 due to the extrapolation uncertainty. At germination the current increases about twofold, resulting in a total transcellular current on the order of 100 pA. Unilateral growth-orienting light reversal stimulates inward current on the new dark side, and subsequent morphological polarity reversal is preceded by electrical polarity reversal. The steady current tends to increase when the external Ca2+ concentration is increased or the external Na+ concentration is decreased, suggesting that the current is carried in part by Ca2+. This current will generate a transcellular electrical field which may be the force driving the observed oöplasmic segregation.  相似文献   

16.
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.  相似文献   

17.
The source and sinks for the intracellular calcium released during fertilization were examined in single eggs from the sea urchin, Arbacia punctulata. Single eggs were microinjected with the calcium photoprotein, aequorin. The calcium-aequorin luminescence was measured with a microscope-photomultiplier or observed with a microscope-image intensifier-video system. In the normal egg a propagated release has been observed. The source of the calcium was investigated in the organelle-stratified centrifuged egg and by the use of mitochondrial uncouplers. In the organelle-stratified centrifuged egg, the calcium-aequorin luminescence was found to originate from the clear zone. The principal constituent of the clear zone is the endoplasmic reticulum. Other potential sources of calcium are the mitochondria. Their contribution to the calcium transient was investigated by exposure of aequorin-injected eggs to mitochondrial uncouplers either before or after fertilization. There was no calcium released from the mitochondria before fertilization. A very large calcium store was released from the mitochondria after fertilization. Interestingly, eggs fertilized in the presence of uncouplers showed no increase in the calcium-aequorin luminescence over untreated eggs. Apparently, in the absence of mitochondrial uptake, other sinks for calcium with affinity and capacity similar to the mitochondria exist, but their nature is unknown. We suggest that the endoplasmic reticulum is the source of the intracellular calcium released upon fertilization and that the mitochondria are the principal sink. The results are discussed with regard to the metabolic activation of the egg.  相似文献   

18.
Intracellular calcium release at fertilization in the sea urchin egg.   总被引:35,自引:0,他引:35  
Fertilization or ionophore activation of Lytechinus pictus eggs can be monitored after injection with the Ca-sensitive photoprotein aequorin to estimate calcium release during activation. We estimate the peak calcium transient to reach concentrations of 2.5–4.5 μM free calcium 45–60 sec after activation and to last 23? min, assuming equal Ca2+ release throughout the cytoplasm. Calcium is released from an intracellular store, since similar responses are obtained during fertilization at a wide range of external calcium concentrations or in zerocalcium seawater in ionophore activations. In another effort to estimate free calcium at fertilization, we isolated egg cortices, added back calcium quantitatively, and fixed for observation with a scanning electron microscope. In this way, we determined that the threshold for discharge of the cortical granules is between 9 and 18 μM Ca2+. Therefore, the threshold for the in vitro cortical reaction is about five times the amount of free calcium, assuming equal distribution in the egg. This result suggests that transient calcium release is confined to the inner subsurface of the egg.  相似文献   

19.
Role of calcium influx during the latent period in sea urchin fertilization   总被引:2,自引:0,他引:2  
After ∼7–40 s following gamete fusion, a steadily increasing fraction of a sea urchin's zygotes initiate an activating calcium wave. The fertilization membrane then rises, the cell cycle resumes and development begins. This study focuses on the so-called latent period that occurs between the time that gamete fusion occurs and the initiation of the activating calcium wave. We inhibited calcium influx during this period by adding lanthanum or by reducing external calcium with a buffer at various time points after insemination. Both of these treatments blocked the activation of eggs that had not yet started a wave at the time of treatment. This indicates that an influx of calcium is needed during the latent period to induce egg activation. These results support the sperm conduit model of egg activation in the sea urchin, where calcium flows from the sea through the fused sperms' acrosomal process into a cortical region of the eggs' endoplasmic reticulum.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2333-2342
Sea urchin egg activation at fertilization is progressive, beginning at the point of sperm entry and moving across the egg with a velocity of 5 microns/s. This activation wave (Kacser, H., 1955, J. Exp. Biol., 32:451-467) has been suggested to be the result of a progressive release of calcium from a store within the egg cytoplasm (Jaffe, L. F., 1983, Dev. Biol., 99:265-276). The progressive release of calcium may be due to the production of inositol trisphosphate (InsP3), a second messenger. We show here that a wave of calcium release crosses the Lytechinus pictus egg; the peak of the wave travels with a velocity of 5 microns/s; microinjection of InsP3 causes the release of calcium within the egg; calcium release (as judged by fertilization envelope elevation) is abolished by prior injection of the calcium chelator EGTA; neomycin, an inhibitor of InsP3 production, does not prevent the release of calcium in response to InsP3 but does abolish the wave of calcium release; the egg cytoplasm rapidly buffers microinjected calcium; the calcium concentration required to cause fertilization membrane elevation when microinjected is very similar to that required to stimulate the production of InsP3 in vitro; and the progressive fertilization membrane elevation seen after microinjection of calcium buffers appears to be due to diffusion of the buffer across the egg cytoplasm rather than to the induction of the activation wave. We conclude that InsP3 diffuses through the egg cytoplasm much more readily than calcium ions and that calcium-stimulated production of InsP3 and InsP3-induced calcium release from an internal store can account for the progressive release of calcium at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号