首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Linaria vulgaris, common or yellow toadflax, and Linaria dalmatica, Dalmatian toadflax (Plantaginaceae), are Eurasian perennial forbs invasive throughout temperate North America. These Linaria species have been the targets of classical biological control programmes in Canada and the USA since the 1960s. The first effective toadflax biological control agent, the stem‐mining weevil Mecinus janthinus (Coleoptera: Curculionidae) was introduced from Europe in the 1990s. This weevil has become established on L. dalmatica and L. vulgaris in both countries, although it has shown greater success in controlling the former toadflax species. Genetic and ecological studies of native range M. janthinus populations revealed that weevils previously identified as a single species in fact include two cryptic species, now recognised as M. janthinus, associated with yellow toadflax, and the recently confirmed species Mecinus janthiniformis, associated with Dalmatian toadflax. The results of a comprehensive study characterising haplotype identities, distributions and frequencies within M. janthinus s.l. native range source populations were compared to those populations currently established in the USA and Canada. The presence of both Mecinus species in North America was confirmed, and revealed with a few exceptions a high and consistent level of host fidelity throughout the adopted and native ranges. Genetic analysis based on mitochondrial cytochrome oxidase subunit II gene (mtCOII) defined the origin and records the subsequent North American establishment, by haplotype, of the European founder populations of M. janthinus (northern Switzerland and southern Germany) and M. janthiniformis (southern Macedonia), and provided population genetic indices for the studied populations. This analysis together with existing North American shipment receipt, release and rearing records elucidates probable redistribution routes and sources of both weevil species from initially released and established adopted range populations.  相似文献   

2.
Dalmatian toadflax has been a target for biological control in North America since the 1960s. The stem-mining weevil Mecinus janthiniformis was first released in Canada and the western United States in the mid-1990s. Since 2007, a citizen-based monitoring program in Idaho, USA has supplemented data collection to help evaluate the impact of M. janthiniformis on Dalmatian toadflax abundance and assess changes in the surrounding plant community. We monitored and analysed trends in toadflax, weevil, and the plant community abundance following weevil releases at the regional and site level (34 sites) across the state of Idaho, USA. Significant declines in toadflax cover and stem density were recorded across the majority of sites. Weevil populations have established at all release sites. The mechanistic model indicated that the population dynamics of toadflax at our sites are negatively affected by M. janthiniformis abundance. When averaged across the region, 15 years after weevil release, Dalmatian toadflax stem density and cover declined by 93 and 84%, respectively. We observed significant declines in toadflax abundance in over 75% of the sites. Changes to the surrounding plant community following weevil releases were less consistent among sites. At the regional scale we found evidence for an overall increase in average cover of native perennial grasses and other exotic weeds (primarily annual grasses and exotic forbs) but a decline in native forbs.  相似文献   

3.
A combined morphological, molecular and biological study shows that the weevil species presently named Mecinus janthinus is actually composed of two different cryptic species: M. janthinus Germar, 1821 and M. janthiniformis To?evski & Caldara sp.n. These species are morphologically distinguishable from each other by a few very subtle morphological characters. On the contrary, they are more readily distinguishable by both molecular and biological characters. A molecular assessment based on the mitochondrial DNA cytochrome oxidase subunit II gene revealed fixed differences between the two species with p‐distances between samples of both species ranging from 1.3 to 2.4%. In addition to this, the larvae of the two species are found to develop on different species within the genus Linaria (Plantaginaceae): M. janthinus is associated with yellow toadflax (L. vulgaris) and M. janthiniformis with broomleaf toadflax (L. genistifolia) and Dalmatian toadflax (L. dalmatica). Molecular and host use records further suggest the occurrence of a third species associated with L. vulgaris within M. janthinus, sampled from north Switzerland, central Hungary and east Serbia. The significance of these new findings is of particular importance because species of the M. janthinus group are used, or are potential candidates, for the biological control of invasive toadflaxes in North America.  相似文献   

4.
Herbivory and pollination are important determinants of female reproductive success in flowering plants. Plants must interact with herbivores and flower visitors simultaneously and interaction with one may alter the outcome of the interaction with the other. These indirect effects can have dramatic impacts on plant fitness. The purpose of this study was to examine whether the stem-boring weevil Mecinus janthiniformis (Curculionidae: Coleoptera) affects flower visitation rate and seed set of the exotic plant Dalmatian toadflax (Linaria dalmatica (L.) Mill. Scrophulariaceae). We compared the flower production, flower morphology, visitation rate, fruit production, and pollen limitation on Dalmatian toadflax plants with and without larval feeding by M. janthiniformis. Feeding by M. janthiniformis reduced the number of flowers and per plant visitation rate, and there was a significant interaction between herbivory and flower number suggesting that the change in visitation rate was not solely a function of a reduction in flower abundance. Herbivory also had direct negative impacts on the reproductive success of Dalmatian toadflax. Total flower and fruit production decreased by over 30 % in plants attacked by M. janthiniformis. However, plants with M. janthiniformis were not more pollen-limited than those without M. janthiniformis. This suggests that herbivory had primarily direct effects female reproductive success.  相似文献   

5.
Mecinus janthinus Germar is a European stem-mining weevil that has been established in North America as a biological control agent against the invasive European weeds Linaria vulgaris P. Mill. and Linaria dalmatica (L.) P. Mill. (Scrophulariaceae). Establishment success and impact of the weevil have varied widely among sites. We investigated the hypothesis that some of this variation may be due to a lack of sufficient time for M. janthinus to develop to the adult (overwintering) stage in less favorable climates. Development time of M. janthinus was measured in L. vulgaris and L. dalmatica at four constant temperatures, and logistic regression was used to derive a model for the effect of temperature on development. Development rates were simulated using historic climate data for a site in central Alberta (where establishment was marginal on L. vulgaris) and one in southern British Columbia (where outbreaks occurred, resulting in heavy damage to L. dalmatica). The model showed that, on average, the British Columbia site had 50 more days available for the weevil to lay eggs that could reach the adult stage in time for overwintering than did the Alberta site. This may explain the more rapid population buildup at the British Columbia site. This model could be used to predict the climatic suitability of other areas for establishment of M. janthinus. An unexplained result was the very low survival rate of eggs laid in L. dalmatica under the same experimental conditions.  相似文献   

6.
7.
《Biological Control》2002,23(2):107-114
The impact of the ovary-feeding beetle Brachypterolus pulicarius on the growth and reproduction of Dalmatian toadflax, Linaria genistifolia spp. dalmatica, was evaluated in greenhouse and field experiments. Studies were conducted with paired plants (with and without B. pulicarius) in the greenhouse and field. Plants from three different age groups (3, 6, and 12 months old) were used. Results of both split-plot analysis of variance and path coefficient analysis indicated that B. pulicarius feeding reduced the height of Dalmatian toadflax plants by up to 23 cm; increased the number of primary and secondary branches by 77 and 95%, respectively; reduced the number of flowers produced per plant by 44 to 49%; and decreased seed production by 43 to 93%. Brachypterolus pulicarius affects reproduction allocation, seed production, and dispersal and may reduce the potential for rapid adaptation by Dalmatian toadflax because fewer seeds will limit the chance of successful mutations. Therefore, B. pulicarius may prove to be an important component in the integrated weed management of Dalmatian toadflax.  相似文献   

8.
In order to better understand the role of herbivorous snails in freshwater ecosystems, we conducted experiments investigating food preference of the snail Radix swinhoei on leaves of the submerged plant Vallisneria spiralis with and without periphyton coverage. The effects of snail grazing on the growth of V. spiralis were assessed in a no-snail control and at three snail densities (80, 160, 240 individuals m?2). Results showed that the snails chose preferentially leaves covered by periphyton. Grazing activity at low snail density (80 individuals m?2) was found to stimulate V. spiralis growth, but at higher snail density (240 individuals m?2), plant growth was apparently suppressed. An increase observed in nutrient concentrations in water column with increasing snail density may be attributed to nutrient release by snails. This study suggests that the nature of the relationship between herbivorous snails and macrophytes in freshwater ecosystems depends on the abundance of the snails. At low snail density, the relationship may be a mutualistic one, but at high density snail herbivory may impact negatively on macrophyte biomass in lakes.  相似文献   

9.
The predatory multicolored Asian lady beetle, Harmonia axyridis, was attracted to volatiles released from Chinese cabbage infested by the green peach aphid, Myzus persicae, in T-tube olfactometer choice tests. However, lady beetle adults and larvae did not respond to clean air, Chinese cabbage alone or green peach aphid alone. Of different prey densities, H. axyridis adults were most attracted to Chinese cabbage infested by 60 M. persicae adults after 24 h. However, H. axyridis larvae were not attracted to Chinese cabbage infested by M. persicae. Mechanically damaged Chinese cabbage attracted neither lady beetle adults nor larvae. Predatory adults were attracted to 60 M. persicae adults after 24 and 48 h, and to 90 M. persicae adults after 12 h, suggesting that the predatory response depends on the prey density. Lady adult beetles did not prefer the volatiles induced by Diamondback moth, Plutella xylostella, indicating that specific host insect specificity attracts respective natural enemies. It can be explained that the volatile compounds emitted from the host plant as a result of herbivore attack preferred by the specific insect species.  相似文献   

10.
Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant densities. We examined whether the growth of the early successional species Jacobaea vulgaris in soil collected from the field is related to the local variation in plant density of this species. In a grassland restoration site, we selected eight 8 m × 8 m plots, four with high and four with low densities of J. vulgaris plants. In 16 subplots in each plot we recorded the density and size of J. vulgaris, and characteristics of the vegetation and the soil chemistry. Soil collected from each subplot was used in a greenhouse pot-experiment to study the growth of J. vulgaris, both in pure field soil and in sterile soil inoculated with a small part of field soil.In the field, flowering J. vulgaris plants were taller, the percentage of rosette plants was higher and seed density was larger in High- than in Low-density plots. In the pot experiment, J. vulgaris had a negative plant–soil feedback, but biomass was also lower in soil collected from High- than from Low-density plots, although only when growing in inoculated soil. Regression analyses showed that J. vulgaris biomass of plants growing in pure soil was related to soil nutrients, but also to J. vulgaris density in the field.We conclude that in the field there is local variation in the negative plant–soil feedback of J. vulgaris and that this variation can be explained by the local density of J. vulgaris, but also by other factors such as nutrient availability.  相似文献   

11.
The hypothesis of associations of environmental soil heterogeneity with citrus tree decline and Diaprepes abbreviatus (L.) root weevil variability was tested in two flatwoods fields of ‘Hamlin’ orange trees (Citrus sinensis (L.) Osb.). Studies were conducted on a loamy, poorly drained Mollisol in Osceola County, central Florida in 2002, and on a sandy, poorly drained Spodosol in DeSoto County, south-west Florida during 2001–2003. Adult weevils were monitored using 50 Tedders traps arranged in a 34 m × 25 m grid at the Osceola site, and using 100 identical traps in a 30 m × 15 m grid at the DeSoto site. Soil water content (SWC), texture, pH, Ca, Mg, Fe, Cu and other nutrients were measured at each trap. Soil was strongly acidic (pH 4.9 ± 0.4) at the Osceola site but near neutral (pH 6.6 ± 0.4) at the DeSoto site. The Mehlich-I extractable soil Mg and Ca were correlated to soil pH and SWC in both soils, and extractable Fe was related to pH, SWC and Mg in the Spodosol (0.30 < R2 < 0.65, P < 0.01). The weevil density was high in areas low in soil Mg and Ca in the acidic Mollisol, but high in areas with high soil pH, and Mg and low sand content in the near neutral Spodosol (P < 0.05). Tree decline was associated with soil Fe concentrations >40 mg kg−1 in the Mollisol (P < 0.01). Weevil density was low at a soil pH between 5.7 and 6.2. The range of spatial dependence of weevil population, soil pH, SWC, Fe, Mg and sand varied between 60 and 100 m in the Mollisol and the Spodosol. Soil-weevil-tree simple and multivariate linear models were established to put into practices for predicting and controlling the weevil population and tree decline in the future. Differences in site characteristics suggested the need for site-specific weevil and citrus tree management.  相似文献   

12.
Brachypterolus pulicarius (L.) (Coleoptera: Kateridae) is an inadvertently introduced biological control agent that can reduce seed set in two North American invasive species, yellow (Linaria vulgaris P. Mill.) (Scrophulariaceae) and Dalmatian toadflax (Linaria genistifolia (L.) P. Mill. ssp. dalmatica). The beetles are more common on yellow toadflax than on Dalmatian toadflax. To understand their distribution on the two host plants, we investigated whether they prefer one host to the other and whether individuals aggregate toward conspecifics. In field and laboratory experiments where beetles were presented with a choice of both toadflax species, B. pulicarius sampled from both host plants preferred yellow toadflax. However, in the laboratory experiment, beetles collected from Dalmatian toadflax showed a weaker preference for yellow toadflax than beetles collected from yellow toadflax. In the field experiment, all beetle populations sampled showed similar preferences. When given a choice between yellow toadflax plants with and without trapped adult B. pulicarius, beetles preferred plants with conspecifics, suggesting aggregation toward beetle pheromones or host‐plant volatiles induced by beetle activity. These results do not support the current practice of redistributing North American B. pulicarius onto Dalmatian toadflax because of their preference for yellow toadflax.  相似文献   

13.
Palm forests of Copernicia alba are a rare habitat in the semi-arid Chaco of Northwestern Argentina, are centres of high species diversity, and provide key resources for many species. Our goal was to assess the conservation status of five C. alba patches in Northwestern Argentina: Reserve; Embarcación; Palma Sola; Vinalito; and, Talar. We compared patches to identify the sites with greatest conservation needs based on four criteria: population size structure; palm density (of individuals with height >1.30 m); probability of seedlings being browsed; and, presence of potential seed dispersers. We found that three (Embarcación, Reserve, and Talar) out of five sites had palm densities greater than 200 individuals/ha and only one site (Embarcación) showed a reverse J-shaped size structure for height. Reserve and Embarcación had the greatest probability of seedlings being browsed (0.99 ± 0.01 and 0.88 ± 0.12, respectively). A total of 14 potential disperser species of mammals and birds were recorded across the five sites. Only Reserve harboured all of the potential dispersers, but at least two potential disperser species were recorded at the other sites. None of the palm patches studied had an adequate conservation status. However, Embarcación met three out of four criteria, and therefore it can be considered to have the best conservation status in the semi-arid Chaco. Palma Sola and Vinalito have the greatest conservation needs. To conserve C. alba in Northwestern Argentina, strategies are needed that ensure seedling establishment for future populations to reach an adequate density and structure.  相似文献   

14.
《Aquatic Botany》2007,86(3):280-284
We evaluated one-sided competition from the floating-leaved plant Nymphoides peltata (non-indigenous in Sweden) on three submerged plant species, Ceratophyllum demersum, Elodea canadensis and Ranunculus circinatus, in a controlled experiment. The three submerged species were allowed to grow for 21 days in the absence of N. peltata and with the species present at densities of approximately 33, 66 and 100% cover. All species retained a positive relative growth rate (RGR) based on length at all N. peltata densities, but responded with negative growth based on weight for several treatments. C. demersum achieved RGR of 0.03 day−1 in the absence of N. peltata, RGR of 0.02 day−1 in the lowest N. peltata density but negative RGR in the two denser treatments. E. canadensis responded similarly with RGR of 0.04 day−1 in the absence of N. peltata, RGR of 0.01 day−1 in the lowest N. peltata density and negative RGR in the two denser treatments. R. circinatus, on the other hand, never achieved positive RGR based on weight. These results suggest that one-sided competition from floating-leaved plants has a profound effect on the submerged plant community.  相似文献   

15.
In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees.  相似文献   

16.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

17.
《Aquatic Botany》2005,81(3):245-251
The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23 °C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass of ca. 180 g dry weight (DW) m−2, the net growth rate became negative. At a density of 9 g DW m−2, a maximum relative growth rate of ca. 0.3 d−1 was found. At very low densities (<9 g m−2), we observed an inverse density dependence (or Allee effect). Probably, this lower growth rate was due to lower local temperatures within such partly covered L. minor decks. On the basis of these experimental results and literature data, a simple model was created. To test the model, the density of duckweed in three different Dutch ditches was monitored for 9 weeks in spring. Within this period, full coverage of the ditches by duckweed was reached. The maximum density increased with rising air temperature. The model described the field data well, suggesting that crowding is an important factor in limitation of duckweed growth.  相似文献   

18.
《Acta Oecologica》2007,31(2):223-228
The effects of cattle grazing on the density of seedlings and saplings in a Tabor oak forest (Quercus ithaburensis subsp. ithaburensis) are investigated. The Tabor oak forest studied is located in a Nature Reserve in the Mediterranean region of Israel. Cattle graze at a stocking density of 0.71 head/ha for 6 months a year. The cattle grazing in the Nature Reserve is a beneficial management measure because it enhances plant species richness and reduces shrub encroachment.The impact of grazing on the densities of seedlings and young saplings was quantified in 46 large sampling plots (333 m2 each) distributed over two experimental sites; the first being used as a rangeland for decades while the second is a forest patch totally free from grazing. The density and the height of Tabor oak individuals in each sampling plot were recorded. Four height categories were distinguished with a special focus on young seedlings (<0.15 m), established seedlings and young saplings (0.15 m–1 m).The density of seedlings and young sapling in the grazed Tabor oak forest were, respectively, 61% to 67% lower than in the ungrazed treatment. Implications on the continuity of the entire Tabor oak forest ecosystem are discussed. Three management measures that enable to prevent a decrease in young oak densities are proposed – reduction of stocking rate, deferment of the commencement of grazing, and fencing young seedlings.  相似文献   

19.
Man made ecosystems of dry lands are key habitats due to their ecological characteristics to survey biodiversity. This study investigated bird diversity in three oases of the Northern Algerian Sahara (i.e., Biskra in 2006, Oued Souf in 2008 and Ouargla in 2009), by using the spot-mapping method. Bird density “D” (pairs/10 ha), species richness “S” (number species), diversity (Shannon index) “H′” (in bits), and evenness “E” varied from one oasis to another (Biskra: D = 98.5, S = 47, H′ = 4.49, E = 0.81; Oued Souf: D = 96, S = 33, H′ = 3.9, E = 0.77; Ouargla: D = 91.5, S = 44, H′ = 4.39, E = 0.80). Differences in bird diversity between the monitored palm groves are due to the ecological characteristics of each environment. Documented literature outlined close taxonomic similarities between bird assemblages of the study area with many Northern Saharan oases. The Hybrid Sparrow Passer domesticus x Passer. hispaniolensis and some Columbidae species including Columba livia, Streptopelia turtur, Streptopelia senegalensis, and Streptopelia decaocto were the abundant species throughout surveyed oases in which they represented more than half (55.6%) of the sum of species densities (D = 286 pairs/10 ha). These synthropic species have known a huge expansion of their distribution range throughout Algerian oases. The correspondence analysis allowed the aggregation of both families and species into oasis they belong to. One-way ANOVA was tested to analyse variations of both family and species densities between studied oases. The ANOVA revealed there was no significant variation either in family densities (p = 0.937) or in bird densities (p = 0.622) between the surveyed oases because of the small size of bird populations.  相似文献   

20.
Functional response is basic to any investigation of predator–prey relationships. In this study, the functional response of female Scymnus syriacus Marseul (Col.: Coccinellidae) to different densities (10, 20, 40, 60, 80, 100) of third instar nymphs of Aphis gossypii Glover as prey was studied in an open patch experiment in a growth chamber (25 °C, 65 ± 5% RH and a photoperiod of 16L:8D h ). Using logistic regression, a type II functional response for female Scymnus syriacus was determined. The searching efficiency (a') and handling time (Th) of the female predator using non linear least-square regression were estimated as 0.0769 ± 0.0136 h? 1 and 0.3103 ± 0.0438 h., respectively. Mean times required for the female predator to settle in a patch were 10.20 ± 4.28, 6.58 ± 2.58, 12.58 ± 4.50, 4.53 ± 1.48, 5.14 ± 2.59, 3.87 ± 3.52 min at different prey densities, respectively. Maximum theoretical predation rate (T/Th) estimated by Rogers' model for the female predator was 77.34. The proportion of female predators remaining in open patches at the end of the experiment was dependent on prey density (R2 = 0.876). The type of functional response obtained here agrees with studies on this predator in closed patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号