首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-level full factorial design (FFD) was employed to determine the effects of process parameters on lipase production by Candida cylindracea ATCC 14830 in palm oil mill effluent (POME)-based medium. Ten experimental runs based on three parameters (temperature, agitation and aeration) as indicated by the FFD were carried out in a stirred-tank bioreactor. On statistical analysis of the results, the optimum temperature, aeration and agitation rates were found to be 30 °C, 1.0 vvm and 400 rpm respectively, with a maximum activity of 41.46 U/ml after 36 h of fermentation. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.999, indicating a satisfactory fit of the model with the experimental data. All the three parameters were statistically significant at p < 0.05. The validation experiment also confirmed that apart from lipase production, there was an increase in chemical oxygen demand (COD) removal throughout the fermentation period.  相似文献   

2.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

3.
The effect of aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor was investigated. B. trispora formed hyphae, zygophores and zygospores during the fermentation. The zygospores were the morphological form responsible for β-carotene production. Both aeration and agitation significantly affected β-carotene concentration, productivity, biomass and the volumetric mass transfer coefficient (KLa). The highest β-carotene concentration (1.5 kg m−3) and the highest productivity (0.08 kg m−3 per day) were obtained at low impeller speed (150 rpm) and high aeration rate (1.5 vvm). Also, maximum productivity (0.08 kg m−3 per day) and biomass dry weight (26.4 kg m−3) were achieved at high agitation speed (500 rpm) and moderate aeration rate (1.0 vvm). Conversely, the highest value of KLa (0.33 s−1) was observed at high agitation speed (500 rpm) and high aeration rate (1.5 vvm). The experiments were arranged according to a central composite statistical design. Response surface methodology was used to describe the effect of impeller speed and aeration rate on the most important fermentation parameters. In all cases, the fit of the model was found to be good. All fermentation parameters (except biomass concentration) were strongly affected by the interactions among the operation variables. β-Carotene concentration and productivity were significantly influenced by the aeration, agitation, and by the positive or negative quadratic effect of the aeration rate. Biomass concentration was principally related to the aeration rate, agitation speed, and the positive or negative quadratic effect of the impeller speed and aeration rate, respectively. Finally, the volumetric mass transfer coefficient was characterized by the significant effect of the agitation speed, while the aeration rate had a small effect on KLa.  相似文献   

4.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

5.
In this study, lipolytic enzyme production by Thermus thermophilus HB27 at bioreactor scale has been investigated. Cultivation was performed in a 5-L stirred tank bioreactor in discontinuous mode, at an agitation speed of 200 rpm. Different variables affecting intra- and extra-cellular lipolytic enzyme production such as culture temperature and aeration rate have been analysed. The bacterium was able to grow within the temperature range tested (from 60 to 70 °C) with an optimum value of 70 °C for intra- and extra-cellular lipolytic enzyme production.On the other hand, various aeration levels (from 0 to 2.5 L/min) were employed. A continuous supply of air was necessary, but no significant improvement in biomass or enzyme production was detected when air flow rates were increased above 1 L/min. Total lipolytic enzyme production reached a maximum of 167 U/L after 3 days, and a relatively high concentration of extra-cellular activity was detected (40% of the total amount). Enzyme yield was around 158 U/g cells. Moreover, it is noteworthy that the lipolytic activity obtained operating at optimal conditions (70 °C and air flow of 1 L/min) was about five-fold higher than that attained in shake flask cultures  相似文献   

6.
《Process Biochemistry》2007,42(3):352-362
The effects of medium components and environmental factors on the production of mycelial biomass and polysaccharide–peptide complexes (exobiopolymers) by Cordyceps sphecocephala J-201 were investigated in submerged cultures. The optimal temperature and initial pH for the production of both mycelial biomass and exobiopolymers in flask cultures were found to be 25 °C and pH 4–5, respectively. The optimal combination of the media constituents was as follows (g l−1): sucrose 40, yeast extract 6, polypepton 2, KH2PO4 0.46, K2HPO4 1, and MgSO4·7H2O 0.5. The results of bioreactor culture revealed that the maximum concentration of mycelial biomass (28.2 g l−1) was obtained at an agitation speed of 300 rpm and at an aeration rate of 2 vvm, whereas maximum exobiopolymer production (2.5 g l−1) was achieved at a milder agitation speed (150 rpm). There was a significant variance in mycelial morphology between different aeration conditions. Looser mycelial pellets were developed, and their size and hairiness increased as the aeration rate increased from 0.5 to 2.0 vvm, resulting in enhanced exobiopolymer production. The apparent viscosities of fermentation broth increased rapidly towards the end of fermentations at the conditions of high aeration rate and agitation speed, which were mainly due to high amount of mycelial biomass rather than exobiopolymers at the later stages of fermentation. The three different exobiopolymers (FR-I, -II, and -III) were fractionated by a gel filtration chromatography on Sepharose CL-6B. The carbohydrate and protein contents in each fraction were significantly different and the molecular weights of FR-I, FR-II, and FR-III were determined to be 1831, 27, and 2.2 kDa, respectively. The compositional analysis revealed that the three fractions of crude exobiopolymers consisted of acidic and nonpolar amino acids, such as aspartic acid, glutamic acid, glycine, and valine in protein moiety, and of mainly mannose and galactose in sugar moiety.  相似文献   

7.
《Process Biochemistry》2014,49(4):576-582
The specific properties of exopolysaccharides (EPS) from thermophilic microorganisms have attracted interest in their optimized production. In this study, the ability of Aeribacillus pallidus 418 to grow and produce polysaccharide in a 5-l stirred tank bioreactor was investigated. Agitation rates of 100, 200, 600, 900, and 1100 revolutions per minute (rpm), at an air flow rate of 0.5 gas volumes per unit medium volume per minute (vvm), and aeration rates of 0.25, 0.5, 1.0, and 1.5 vvm, at an agitation rate of 900 rpm, were examined. A maximum EPS yield of 170 μg/ml has been registered in a single impeller bioreactor equipped with an original Narcissus impeller at agitation speed of 900 rpm, with an aeration rate of 0.5 vvm. The bioprocess oxygen uptake rate (OUR) and oxygen mass transfer coefficient (KLa) were evaluated. The emulsifying properties of the specific EPS produced by A. pallidus 418 were determined. Stable oil-in-water emulsions, a low level of separated water phase and high dispersion stability were found, which together demonstrate the prospects for the industrial exploration of EPS production. Enhanced synergism between the A. pallidus 418 synthesized EPS and various commercially used hydrocolloids was observed; superior synergy was achieved in combination with xanthan gum.  相似文献   

8.
The conversion of glycerol to 1,3-propanediol (1,3-PD) using Klebsiella pneumoniae CGMCC 1.6366 under aerobic condition was scaled up from scale 5 to 50,000 l in series. Several parameters including power input P/Vl, agitation rate n, impeller tip speed nD, superficial gas velocity us, and Res were investigated as the criteria for scaling up. Impeller tip speed was chosen as the main criterion. It was also noticed less aeration was favored in that less electron will be shunted to electron transfer chain. The fermentation in 500 l bioreactor produced 66.8 g 1,3-PD with the yield of 0.55 mol mol?1 at agitation rate and aeration of 130 rpm and 0.14 vvm air flow. Using these empirically obtained control concepts we successfully scaled up in 500–50,000 l pilot-scale reactors. The final 1,3-PD concentrations in 50,000 l bioreactor amounted to 63.3 g l?1 with the yield of 0.5 mol mol?1.  相似文献   

9.
The thermotolerant Rhizopus microsporus DMKU 33 capable of producing l-lactic acid from liquefied cassava starch was isolated and characterized for its phylogenetic relationship and growth temperature and pH ranges. The concentrations of (NH4)2SO4, KH2PO4, MgSO4 and ZnSO4·7H2O in the fermentation medium was optimized for lactic acid production from liquefied cassava starch by Rhizopus microsporus DMKU 33 in shake-flasks at 40 °C. The fermentation was then studied in a stirred-tank bioreactor with aeration at 0.75 vvm and agitation at 200 rpm, achieving the highest lactic acid production of 84 g/L with a yield of 0.84 g/g at pH 5.5 in 3 days. Lactic acid production was further increased to 105–118 g/L with a yield of 0.93 g/g and productivity of 1.25 g/L/h in fed-batch fermentation. R. microsporus DMKU 33 is thus advantageous to use in simultaneous saccharification and fermentation for l-lactic acid production from low-cost starchy substrates.  相似文献   

10.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

11.
《Process Biochemistry》2010,45(6):986-992
The study was carried out to immobilise the acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon (MAC400) for the application of hydrolysis of olive oil. MAC400 was prepared from rice husk by the two stages process. P. gessardii was isolated from the beef tallow acclimatised soil. The acidic lipase (ALIP) was produced from a slaughterhouse waste, namely beef tallow as a substrate and immobilised onto MAC400. The maximum immobilisation capacity of the MAC400 was 3570 U/g at optimum immobilisation conditions; time (180 min), pH (5.0) and temperature (30 °C). The immobilised lipase had better thermal stability and reusability than the free lipase. The immobilisation of ALIP onto MAC400 (MAC400–ALIP) followed pseudo-first-order rate kinetics with rate constant 0.012/min. The Michaelis–Menten constant of MAC400–ALIP was lower than that of the ALIP, which confirmed the higher affinity between enzyme and substrate. The immobilization of acidic lipase onto MAC400 was confirmed by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern analysis. Reusability study of MAC400–ALIP on olive oil hydrolysis showed 82% of hydrolysis up to 13 runs and 50% of hydrolysis up to 35 cycles of reuse. This work concludes that the acidic lipase immobilised mesoporous activated carbon matrix can be considered as a potential biocatalyst for the hydrolysis of olive oil. Thus, the enzyme immobilised matrix has potential industrial applications.”  相似文献   

12.
A thermostable and organic solvent-tolerant lipase produced by Aneurinibacillus thermoaerophilus strain HZ was purified and characterised. The lipase was purified to apparent homogeneity with two steps: anion exchange chromatography on Q-Sepharose and gel filtration on Sephadex-G75. A final specific activity of 43.5 U/mg was obtained with an overall recovery of 19.7% and 15.6 purification fold. The molecular mass of the HZ lipase was estimated to be 50 kDa. The optimum pH for the activity of the purified HZ lipase was 7.0. The stability showed a broad range of pH values between pH 4.0 and 9.0 at 30 °C. The purified HZ lipase exhibited an optimum temperature of 65 °C with a half-life of 3 h and 10 min at 65 °C. The activity of the purified HZ lipase was stimulated in the presence of Ca2+. Organic solvents such as dimethyl sulfoxide (DMSO), methanol, n-tetradecane and n-hexadecane enhanced the lipase activity. Studies on the effect of oil showed that the lipase preferred natural oil, such as sunflower oil, over synthetic substrates.  相似文献   

13.
In order to examine the structure–activity relationship and the substrate specificity of human d-amino acid oxidase (h.DAO), a single amino acid mutation had been established as proline-219-luecine (P-219-L). The gene encoding mutant h.DAO has been cloned and expressed in Escherichia coli BL21 (DE3). It was observed that the host cell was negatively affected by the expressed mutant h.DAO, resulting in a remarkable decrease in the cell growth and consequently the amount of the produced enzyme. To overcome this problem, we investigated several factors that may affect the cell growth rate and the mutant h.DAO production such as optimization of the glucose concentration as a main carbon source and the yeast extract concentration as a main nitrogen source, optimization of dissolved oxygen (DO%) concentration and the addition of benzyl alcohol (BA, which can artificially induce a strong heat shock response at low temperature), to enhance the production of natively folded soluble fraction of the recombinant protein. These parameters were tested on both shake flask level and fed-batch bioreactor level. The Western blot analysis and the enzyme activity assay indicated the higher level of the mutant expression towards enhancement of the conditions by using our designed approach.The specific activity (which was used as an indicator for the level of the desired protein produced = U/mg protein) and the OD600 nm of the host cells (which was used as an indicator for the cell growth), reached to be 0.061 U/mg protein and 3.44, respectively upon using fed-batch culture system containing the optimized medium composition (15 g/l glucose and 5 g/l yeast extract). While upon using the shake flask level, these values were 0.032 and 1.1, respectively. Enhancement of the cell growth and the enzyme production was noticed after DO% optimization upon using 500 rpm agitation speed and 1.8 v.v.m. (volume volume minute) aeration. The specific activity for the mutant enzyme and the OD600 nm of the host cells reached to be 0.14 U/mg protein and 7.1, respectively. Finally upon using the optimized culture composition (15 g/l glucose and 5 g/l yeast extract), optimized DO% (using 500 rpm agitation speed and 1.8 v.v.m.) and 0.1 mM BA at the fed-batch bioreactor level, the specific activity and the OD600 nm of the host cells increased significantly to be 0.21 U/mg protein and 11.3, respectively at 24 h culture. These results indicate the importance of our approaches to overproducing mutant h.DAO in soluble form in E. coli.  相似文献   

14.
《Process Biochemistry》2004,39(11):1495-1502
The culture medium including nitrogen source, carbon source and metal ions, for lipase from Penicillium camembertii Thom PG-3 was optimized and the optimal medium consisted of soybean meal (fat free) 4%, Jojoba oil 0.5%, (NH4)2HPO4, 0.1% Tween 60, initial pH 6.4 and the inoculation was at 28 °C for 96 h. The lipase activity produced was enhanced 3.9-fold and reached 500 U/ml. The lipase was purified 19.8-fold by pH precipitation, ethanol precipitation and ammonium sulphate precipitation as well as DEAE-cellulose chromatography. The purified lipase showed one polypeptide band in SDS-polyacrylamide gel electrophoreses (SDS-PAGE) with molecular weight 28.18 kDa. The optimal pH and temperature for activity of lipase were 6.4 and 48 °C, respectively, which are higher than those lipases from other penicillium sources. The P. camembertii Thom lipase is 1,3-positional specificity for hydrolysis of triglyceride and hydrolyses plant oil preferentially to animal oil. The lipase can be used in short chain ester synthesis with an esterification degree of 95%.  相似文献   

15.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

16.
This large-scale production, toxicity, characterization and economic analysis of the biosurfactant from Candida lipolytica UCP 0988 produced in the low-medium formulated with animal fat and corn steep liquor was investigated. The biosurfactant was produced in the stationary phase under 200 rpm in the absence of aeration and reduced the surface tension of the medium from 50 to 28 mN/m after 96 h, yielding 10.0 g/L of isolated biosurfactant in a 2 L bioreactor. The production was maximized in a 50 L bioreactor, reaching 40 g/L biosurfactant and 25 mN/m. The cell biomass was quantified and characterized for use in animal nutrition. Chemical structures of the biosurfactant were identified using FTIR and NMR. The crude biosurfactant was not toxic to the bivalve Anomalocardia brasiliana, to the microcrustacean Artemia salina, or three species of vegetables seeds. The biosurfactant stimulated the degradation of motor oil by the seawater indigenous microorganisms. The results obtained indicate that the biosurfactant produced has great potential to be applied as a bioremediation agent for cleaning oil spills.  相似文献   

17.
A low-cost lipase preparation is required for enzymatic biodiesel synthesis. One possibility is to produce the lipase in solid-state fermentation (SSF) and then add the fermented solids (FS) directly to the reaction medium for biodiesel synthesis. In the current work, we scaled up the production of FS containing the lipases of Rhizopus microsporus. Initial experiments in flasks led to a low-cost medium containing wheat bran and sugarcane bagasse (50:50 w/w, dry basis), supplemented only with urea. We used this medium to scale-up production of FS, from 10 g in a laboratory column bioreactor to 15 kg in a pilot packed-bed bioreactor. This is the largest scale yet reported for lipase production in SSF. During scale-up, the hydrolytic activity of the FS decreased 57%: from 265 U g−1 at 18 h in the laboratory bioreactor to 113 U g−1 at 20 h in the pilot bioreactor. However, the esterification activity decreased by only 14%: from 12.1 U g−1 to 10.4 U g−1. When the FS produced in the laboratory and pilot bioreactors were dried and added directly to a solvent-free reaction medium to catalyze the esterification of oleic acid with ethanol, both gave the same ester content, 69% in 48 h.  相似文献   

18.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

19.
The effects of agitation and aeration upon synthesis and molecular weight of the biopolymer gellan were systematically investigated in batch fermenter cultures of the bacterium, Sphingomonas paucimobilis. High aeration rates and vigorous agitation enhanced growth of S. paucimobilis. Although gellan formation occurred mainly in parallel with cell growth, the increase in cells able to synthesise gellan did not always lead to high gellan production. For example, at very high agitation rates (1000 rpm) growth was stimulated at the expense of biopolymer synthesis.Maximal gellan concentration was obtained at 500 rpm agitation and either 1 or 2 vvm aeration (12.3 and 12.4 g/l gellan, respectively). An increase in aeration (from 1 to 2 vvm) enhanced gellan synthesis only at low agitation rates (250 rpm). However, high aeration or dissolved oxygen was not necessary for high gellan synthesis, in fact oxygen limitation always preceded the phase of maximum gellan production and probably enhanced polysaccharide biosynthesis.Some gellan was formed even after glucose exhaustion. This was attributed to the intracellular accumulation of polyhydroxyalkanoates, (such as polyxydroxybutyrate) which were found in S. paucimobilis cells indicating the existence of a carbon storage system, which may contribute to gellan biosynthesis under glucose-limiting conditions.The autolysis of the culture, which occurred at the late stages of the process, seemed to be triggered mainly by limitations in mass (nutrient) transfer, due to the highly viscous process fluid that gradually develops. Rheological measurements generally gave a very good near real time estimate of maximum biopolymer concentration offering the possibility of improved process control relative to time consuming gravimetric assay methods.While mechanical depolymerisation of gellan did not occur, high aeration rates (2 vvm) led to production of gellan of low molecular weight (at either 250 or 500 rpm). This effect of aeration rate upon gellan molecular weight is reported here for the first time, and is important for the properties and applications of gellan. Mechanisms which may have led to this are discussed, but control of molecular weight of the biopolymers is clearly an area needing further research.  相似文献   

20.
Protease producing halotolerant bacterium was isolated from saltern pond sediment (Tuticorin) and identified as Bacillus licheniformis (TD4) by 16S rRNA gene sequencing. Protease production was enhanced by optimizing the culture conditions. The nutritional factors such as carbon and nitrogen sources, NaCl and also physical parameters like incubation time, pH, agitation, inoculum size were optimized for the maximum yield of protease. Studies on the effect of different carbon and nitrogen sources revealed that xylose and urea enhances the enzyme production. Thus, with selected C–N sources along with 1 M NaCl the maximum protease production (141.46 U/mg) was obtained in the period of 24 h incubation at pH 8 under 250 rpm compared to the initial enzyme production (89.87 U/mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号