首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly sensitive, specific and rapid electrochemical oxalate biosensor was constructed by covalently immobilizing sorghum leaf oxalate oxidase on carboxylated multiwalled carbon nanotubes and conducting polymer, polyaniline nanocomposite film electrodeposited over the surface of platinum (Pt) wire using N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry. The optimized oxalate biosensor showed linear response range of 8.4-272 μM with correlation coefficient of 0.93 and rapid response within 5 s at a potential of 0.4 V vs Ag/AgCl. The sensitivity was approximately 0.0113 μA/μM with a detection limit of 3.0 μM. Proposed oxalate biosensor was successfully applied to human urine sample.  相似文献   

2.
Cytochrome c was immobilized covalently onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline composite (NiO-NPs/cMWCNT/PANI) electrodeposited on gold (Au) electrode. An amperometric H2O2 biosensor was constructed by connecting this modified Au electrode along Ag/AgCl as reference and Pt wire as counter electrode to the galvanostat. The modified Au electrode was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR). Cyclic voltammetric (CV) studies of the electrode at different stages demonstrated that the modified Au electrode had enhanced electrochemical oxidation of H2O2, which offered a number of attractive features to develop an amperometric biosensor based on split of H2O2. There was a good linear relationship between the current (mA) and H2O2 concentration in the range 3–700 μM. The sensor had a detection limit of 0.2 μM (S/N = 3) with a high sensitivity of 3.3 mA μM?1 cm?2. The sensor gave accurate and satisfactory results, when employed for determination of H2O2 in different fruit juices.  相似文献   

3.
A method is described for construction of an improved amperometric acrylamide biosensor based on covalent immobilization of hemoglobin (Hb) onto nanocomposite of carboxylated multi-walled carbon nanotubes (cMWCNT) and iron oxide nanoparticles (Fe3O4NPs) electrodeposited onto Au electrode through chitosan (CHIT) film. The Hb/cMWCNT-Fe3O4NP/CHIT/Au electrode was characterized by scanning electron microscopy, Fourier transform infra-red spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry at different stages of its construction. The biosensor was based on interaction between acrylamide and Hb, which led to decrease in the electroactivity of Hb, i.e., current generated during its reversible conversion [Fe(II)/Fe(III)]. The biosensor showed optimum response within 8 s at pH 5.0 and 30 °C. The linear working range for acrylamide was 3–90 nM, with a detection limit of 0.02 nM and sensitivity of 36.9 μA/nM/cm2. The biosensor was evaluated and employed for determination of acrylamide in potato crisps.  相似文献   

4.
A new third-generation biosensor for H(2)O(2) assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/multiwalled carbon nanotubes (MWCNTs) modified gold electrode. The prepared HRP/TTF-TCNQ/MWCNTs/Au electrode was used for the bioelectrocatalytic reduction of H(2)O(2), with a linear range from 0.005 to 1.05mM and a detection limit of 0.5muM for amperometric sensing of H(2)O(2). In addition, a novel method on the basis of electrochemical quartz crystal microbalance (EQCM) measurements was proposed to determine the effective enzymatic specific activity (ESA) of the immobilized HRP for the first time, and the ESA was found to be greater at the TTF-TCNQ/MWCNTs/Au electrode than that at the MWCNTs/Au or TTF-TCNQ/Au electrode, indicating that the TTF-TCNQ/MWCNTs film is a good HRP-immobilization matrix to achieve the direct electron transfer between the enzyme and the electrode.  相似文献   

5.
A new silver nanoparticles (AgNPs)/carboxylated multiwalled carbon nanotubes (c-MWCNT)/polyaniline (PANI) film has been synthesized on Au electrode using electrochemical techniques. The enzyme glutathione oxidase (GSHOx) (EC 1.8.3.3) was immobilized covalently on the surface of AgNPs/c-MWCNT/PANI/Au electrode to construct the glutathione biosensor. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) spectrophotometry. The biosensor showed optimum response within 4s at +0.4V vs. Ag/AgCl, pH 6.0 and 35 °C, with a linear working range of 0.3-3500 μM and a detection limit of 0.3 μM. The glutathione biosensor was employed for measurement of glutathione content in hemolysated erythrocyte (RBC). The sensor was evaluated with 97.77% and 99.16% recovery of added glutathione in hemolysated RBC and 2.4% and 6.3% within and between batch coefficients of variation (CVs) respectively. The enzyme electrode lost 50% of its initial activity after 300 uses over a period of 3 months, when stored at 4 °C. The biosensor has the advantages over earlier biosensors in terms of greater stability, lower response time and no interference by a number of RBC hemolysate substances.  相似文献   

6.
Tan X  Li M  Cai P  Luo L  Zou X 《Analytical biochemistry》2005,337(1):111-120
A new type of amperometric cholesterol biosensor based on sol-gel chitosan/silica and multiwalled carbon nanotubes (MWCNTs) organic-inorganic hybrid composite material was developed. The hybrid composite film was used to immobilize cholesterol oxidase on the surface of Prussian blue-modified glass carbon electrode. Effects of some experimental variables such as enzyme loading, concentration of Triton X-100, pH, temperature, and applied potential on the current response of the biosensor were investigated. Analytical characteristics and dynamic parameters of the biosensors with and without MWCNTs in the hybrid film were compared, and the results show that analytical performance of the biosensor can be improved greatly after introduction of the MWCNTs. Response time, sensitivity, linear range, limit of detection (S/N=3), and apparent Michaelis-Menten constant Km are 25s, 0.54 microA mM(-1), 8.0 x 10(-6) to 4.5 x 10(-4) M, 4.0 x 10(-6) M, and 0.41 mM for the biosensor without MWCNTs and 13 s, 1.55 microA mM(-1), 4.0 x 10(-6) to 7.0 x 10(-4) M, 1.0 x 10(-6) M, and 0.24 mM for the biosensor with MWCNTs, respectively. The activation energy of the enzyme-catalyzed reaction was measured to be 42.6 kJ mol(-1). This method has been used to determine the free cholesterol concentration in real human blood samples.  相似文献   

7.
J Meng  X Cheng  J Liu  W Zhang  X Li  H Kong  H Xu 《PloS one》2012,7(7):e38995
In this work the effects of four different multiwalled carbon nanotubes (MWCNTs), including long carboxylated (L-COOH), short carboxylated (S-COOH), long aminated (L-NH(2)) and short aminated (S-NH(2)) ones, on the integrity of red blood cells, coagulation kinetics and activation of platelets were investigated with human whole blood. We found that the four MWCNTs induced different degrees of red blood cell damage as well as a mild level of platelet activation (10-25%). L-COOH and L-NH(2) induced a higher level of platelet activation than S-COOH and S-NH(2) respectively; meanwhile L-NH(2) caused marked reductions in platelet viability. The presence of the four MWCNTs led to earlier fibrin formation, L-NH(2) increased the clots hardness significantly, while L-COOH and S-NH(2) made the clots become softer. It was concluded that the four MWCNTs affected blood coagulation process and the clots mechanical properties; they also altered the integrity of the red blood cells and the viability of the platelets, as well as induced platelets activation. The effects of MWCNTs depended on the size and chemistry of the nanotubes and the type of cells they contacted.  相似文献   

8.
Laccase purified from Ganoderma sp. was immobilized covalently onto electrochemically deposited silver nanoparticles (AgNPs)/carboxylated multiwalled carbon nanotubes (cMWCNT)/polyaniline (PANI) layer on the surface of gold (Au) electrode. A polyphenol biosensor was fabricated using this enzyme electrode (laccase/AgNPs/cMWCNT/PANI/Au electrode) as the working electrode, Ag/AgCl as the reference electrode, and platinum (Pt) wire as the auxiliary electrode connected through a potentiostat. The biosensor showed optimal response at pH 5.5 (0.1 M acetate buffer) and 35 °C when operated at a scan rate of 50 mV s−1. Linear range, response time, and detection limit were 0.1–500 μM, 6 s, and 0.1 μM, respectively. The sensor was employed for the determination of total phenolic content in tea, alcoholic beverages, and pharmaceutical formulations. The enzyme electrode was used 200 times over a period of 4 months when stored at 4 °C. The biosensor has an advantage over earlier enzyme sensors in that it has no leakage of enzyme during reuse and is unaffected by the external environment due to the protective PANI microenvironment.  相似文献   

9.
Su Y  Xie Q  Chen C  Zhang Q  Ma M  Yao S 《Biotechnology progress》2008,24(1):262-272
The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.  相似文献   

10.
The present study demonstrates covalent immobilization of Kluyveromyces lactis β galactosidase on functionalized multi-walled carbon nanotubes (MWCNTs). Highly efficient surface modification of MWCNTs was achieved by glutaraldehyde for binding greater amount of enzyme. X-ray diffraction analysis and UV visible spectroscopy of MWCNTs showed them to be entirely dispersive in aqueous solution. Transmission electron microscopy showed that MWCNTs were of 20 nm size. Thermogravimetric analysis further revealed the stability of glutaraldehyde modified MWCNT as an ideal matrix for enzyme immobilization. The optimal pH for soluble and immobilized β galactosidase was observed at pH 7.0 while the optimal operating temperatures were observed at 40 °C and 50 °C, respectively. Moreover, our findings demonstrated that β galactosidase immobilized on surface functionalized MWCNTs retained greater biocatalytic activity at higher galactose concentration, and upon repeated uses as compared to enzyme in solution.  相似文献   

11.
A high-performance amperometric polyphenol biosensor was developed, based on covalent immobilization of Ganoderma sp. laccase onto copper nanoparticles (CuNP's)/chitosan (CHIT)/carboxylated multiwalled carbon nanotube (cMWCNT)/polyaniline (PANI)-modified gold (Au) electrode. The CuNP's and cMWCNT had a synergistic electrocatalytic effect in the matrix of CHIT. The biosensor showed optimum response at pH 6.0 (0.1 M acetate buffer) and 35 °C, when operated at 50 mV s−1. The biosensor exhibited excellent sensitivity (the detection limit was down to 0.156 μM for guaiacol), fast response time (less than 4 s) and wide linear range (from 1 to 500 μM). Analytical recovery of added guaiacol was 96.40-98.46%. Within batch and between batch coefficients of variation were <2.6% and <5.3%, respectively. The enzyme electrode was used 300 times over a period of 7 months, when stored at 4 °C.  相似文献   

12.
A novel method based on covalent attachment of two enzymes, glucose oxidase (GOD) and horseradish peroxide (HRP), onto carboxylic-derived multiwalled carbon nanotubes (MWNTs) for the deposition of electroactive polyaniline (PANI) under ambient conditions is described. Ultraviolet-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy were used to characterize the assembling of bienzyme and the morphology of PANI|MWNTs. Under the bienzyme biocatalytic condition, a head-to-tail structure of PANI templated by MWNTs was formed. The voltammetric characteristics of the resulting biosensor were investigated by cyclic voltammetry in the presence of glucose. The current response of PANI was linearly related to glucose concentration between 0.05 and 12.0mM with a correlation coefficient of 0.994. The synergistic performance of bienzyme, highly efficient polymerization, and templated deposition provide a general platform for the synthesis of nanowires and nanocircuits, the construction of bioelectronic devices, and the design of novel biosensors.  相似文献   

13.
Nanomaterials have been studied widely as the supporting materials for enzyme immobilization because in theory, they can provide low diffusion resistance and high surface/volume ratio. Common immobilization methods, such as physical adsorption, covalent binding, crosslinking, and encapsulation, often cause problems in enzyme leaching, 3D structure change and strong mass transfer resistance. We have previously demonstrated a site-specific enzyme immobilization method, which is based on the specific interaction between a His-tagged enzyme and functionalized single-walled carbon nanotubes (SWCNTs), that can overcome the foresaid constraints. In this work, we broadened the use of this immobilization approach by applying it on other nanomaterials, including multi-walled carbon nanotubes and carbon nanospheres. Both supporting materials were modified with Nα,Nα-bis(carboxymethyl)-l-lysine hydrate prior to enzyme immobilization. The resulting nanomaterial–enzyme conjugates could maintain 78–87% of the native enzyme activity and showed significantly better stability than the free enzyme. When compared with the SWCNT–enzyme conjugate, we found that the size variance among these supporting nanomaterials may affect factors such as surface curvature, surface coverage and particle mobility, which in turn results in differences in the activity and stability among these immobilized biocatalysts.  相似文献   

14.
Single-walled carbon nanotubes are novel molecular-scale wires having excellent anti-adhesion properties with regard to platelets. On the other hand, chitosan is a partially de-acetylated derivative of chitin that has a critical role in cell attachment and growth. The aim of this study was to investigate how carbon nanotubes improve the blood biocompatibility of chitosan film. We prepared composite films with various concentrations of chitosan/carbon nanotubes (CS/CNTs) (1.3–6.3 wt%). The sample surfaces were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The surface characterization revealed that the surface of the CS/CNTs composite film became more hydrophobic with increasing amounts of CNTs. Cell attachment tests using bovine aortic endothelial cells (BAECs) indicated that CS/CNTs composite films retained their cell adhesion ability. The blood compatibility of the CS/CNTs composite films was evaluated using the blood platelet adhesion and activation tests in vitro. Platelet adhesion results confirmed that platelet adhesion and the formation of a platelet network were inhibited on composite films with higher concentrations of CNTs (5.1 wt%). Our experimental results show that the novel composite film containing CS/CNTs possesses two paradoxical characteristics, namely, good adherence of endothelial cells and minimum adherence and activation of platelets, making this film a promising antithrombogenic material for use in the biomedical field.  相似文献   

15.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

16.
A rapid, convenient and accurate method for the simultaneous detection of guanine (G), adenine (A), thymine (T) and cytosine (C) was developed at a multiwalled carbon nanotube (MWCNT)/choline (Ch) monolayer-modified glassy carbon electrode (GCE). X-ray photoelectron spectroscopy data demonstrated that Ch was covalently immobilised on the surface of GCE through oxygen atom. The Ch monolayer provides a positively charged surface with -N(+)(CH(3))(3) polar groups, so that it can attract negatively charged MWCNTs to the surface. Consequently, the MWCNT/Ch film exhibited remarkable electrocatalytic activities towards the oxidation of G, A, T and C due to the advantages of high electrode activity, large surface area, prominent antifouling property, and high electron transfer kinetics. All purine and pyrimidine bases showed well-defined catalytic oxidation peaks at MWCNT/Ch/GCE. The peak separations between G and A, A and T, and T and C are 270, 200, and 190 mV, respectively, which are sufficiently large for their potential recognition and simultaneous detection in mixture. Under the optimum conditions, the designed MWCNT/Ch/GCE exhibited low detection limit, high sensitivity and wide linear range for simultaneous detection of G, A, T and C. Moreover, the proposed method was successfully applied to the assessment of G, A, T and C contents in a herring sperm DNA sample with satisfactory results.  相似文献   

17.
Tu X  Xie Q  Jiang S  Yao S 《Biosensors & bioelectronics》2007,22(12):2819-2826
The electrochemical quartz crystal impedance (EQCI) method was used to study the overoxidation of polypyrrole (PPy)–multiwalled carbon nanotubes (MWCNT) nanocomposite film in neutral and alkaline solutions. The values of molar mass per electron transferred (M/n) obtained during the overoxidation of PPy in 0.10 mol L−1 Na2SO4 and 0.20 mol L−1 NaOH aqueous solutions were estimated to be ca. 17 and 22 g mol−1, respectively, suggesting the nucleophilic attack of solution OH to the pyrrole units during the overoxidation, and the possible partial formation of carboxylic groups after the overoxidation in the NaOH solution. Also, the overoxidized PPy–MWCNT composite film prepared in the NaOH solution showed a notably larger affinity to dopamine (DA) dissolved in a neutral phosphate buffer than that prepared in the Na2SO4 solution. The modification of the overoxidized nanocomposite film improved substantially the sensitivity for DA assay in a neutral phosphate buffer, as compared with the modification of overoxidized PPy or MWCNT alone. At a −6 kHz (201-nm thickness) nanocomposite film prepared in a polymerization bath containing 1.0 mg mL−1 MWCNT and overoxidized in 0.20 mol L−1 aqueous NaOH, the peak current response from differential pulse voltammetric assay of DA was linear with DA concentration from 4.0 × 10−8 to 1.4 × 10−6 mol L−1, with a lower limit of detection of 1.7 nmol L−1, good anti-interferent ability, as well as good stability and reproducibility.  相似文献   

18.
Xanthine oxidase (E. C. 1.2.3.2) was immobilized by adsorption on electrochemically modified graphite plate to obtain an enzyme electrode. The current of the enzyme electrode in substrate (xanthine) solutions was found to be a result of the electrooxidation of H2O2 generated in the enzyme layer. The linearity of the amperometric signal was up to a substrate concentration of 65 microM at 0.6 V (vs. Ag/AgCl). The response time was 2 minutes. The enzyme electrode preserves 80% of its initial activity after a three-week storage in air at room temperature.  相似文献   

19.
Flavin adenine dinucleotide (FAD) and glucose oxidase were adsorbed on medium porosity spectroscopic graphite (SG) and on low porosity glassy carbon (GC) with retention of electrochemical activity, as measured by cyclic and differential pulse voltammetry. Adsorption on the SG was very strong, while that on GC was much weaker. Enzyme activity could be partially restored by the addition of the apoenzyme of glucose oxidase to the SG-adsorbed FAD preparation. The holoenzyme of glucose oxidase also was adsorbed on SG with retention of enzyme activity. The mechanism for the reconstitution of active enzyme from adsorbed FAD and soluble apoenzyme is not clear. The data suggest that the reconstituted enzyme stays adsorbed to the SG, but it is not clear whether the FAD or protein portions (or both) are adsorbed after reconstitution. The data also indicate that substrate mass transfer resistance may be important with the reconstituted-adsorbed enzyme.  相似文献   

20.
Glucose oxidase electrodes were constructed on a platinum screen using polyacrylamide gel, glutaraldehyde crosslinking, and glutaraldehyde crosslinking with +0.04 volts dc on the platinum screen as the methods of enzyme immobilization. The electrodes were evaluated in an electrochemical cell for the oxidation of glucose at the enzyme electrode and the reduction of oxygen at a platinum auxiliary electrode, using constant current voltametry or under external load operation. The method of immobilization affected the extrapolated opencircuit potential as well as the half-cell potential and the steady current under external load operation. The charged glutaraldehyde electrode gave the best current performance; however, the small output (microamps) indicated that major problems in electron transfer from an enzyme catalyst to an external circuit must be resolved before such electrodes can be used in practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号