首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H(2)O(2). The pH effect on amperometric response to H(2)O(2) was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.  相似文献   

2.
A novel method for lactose determination in milk is proposed. It is based on oxidation of lactose by cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete chrysosporium, immobilised in an enzyme reactor. The reactor was prepared by cross-linking CDH onto aminopropyl-silanised controlled pore glass (CPG) beads using glutaraldehyde. The combined biosensor worked in flow injection analysis (FIA) mode and was developed for simultaneous monitoring of the thermometric signal associated with the enzymatic oxidation of lactose using p-benzoquinone as electron acceptor and the electrochemically generated current associated with the oxidation of the hydroquinone formed. A highly reproducible linear response for lactose was obtained between 0.05 mM and 30 mM. For a set of more than 500 samples an R.S.D. of less than 10% was achieved. The assay time was ca. 2 min per sample. The sensor was applied for the determination of lactose in dairy milk samples (milk with a fat content of 1.5% or 3% and also "lactose free" milk). No sample preparation except dilution with buffer was needed. The proposed method is rapid, suitable for repeated use and allows the possibility to compare results from two different detection methods, thus providing a built-in quality assurance. Some differences in the response observed between the methods indicate that the dual approach can be useful in mechanistic studies of redox enzymes. In addition, a dual system opens up interesting possibilities for studies of enzyme properties and mechanisms.  相似文献   

3.
Amperometric biosensors based on gold planar or nanocomposite electrode containing multiwalled carbon nanotubes for determination of glycerol were developed. The biosensors were constructed by immobilization of a novel multienzyme cascade consisting of glycerol kinase/creatine kinase/creatinase/sarcosine oxidase/peroxidase between a chitosan "sandwich." A measuring buffer contained adenosine 5'-triphosphate (ATP), creatine phosphate, and an artificial electrochemical mediator ferrocyanide. The currents proportional to glycerol concentration were measured at working potential of -50 mV against Ag/AgCl reference electrode. The biosensors showed linearity over the ranges of 5-640 μM and 5-566 μM with detection limits of 1.96 and 2.24 μM and sensitivities of 0.80 and 0.81 nA μM(-1), respectively. Both types of biosensors had a response time of 70s. The biosensors demonstrated satisfactory operational stability (no loss of sensitivity after 90 consecutive measurements) and excellent storage stability (90% of the initial sensitivity after 15 months of storage at room temperature). The results obtained from measurements of wines correlated well with those obtained with an enzymatic-spectrophotometric assay. The presented multienzyme cascade can be used also for determination of triglycerides or various kinase substrates when glycerol kinase is replaced by other kinases.  相似文献   

4.
Different branchs of industry need to use ethanol in their production and some progress and not only the industry also to determine ethanol sensitively, accurately, fast and economical is very important. For the sensitive determination of ethanol a new amperometric biosensor based on Candida tropicalis cells, which contains alcohol oxidase enzyme, immobilized in gelatin by using glutaraldehyde was developed. In the study, before the microbial biosensor construction C. tropicalis cells were activated and cultured in a culture medium. By using gelatine and glutaraldehyde (0.1%) C. tropicalis cells obtained in logarithmic phase were immobilized and fixed on a pretreated teflon membrane of a dissolved oxygen probe. Ethanol determination is based on the assay of the differences on the respiration activity of the cells on the oxygenmeter in the absence and the presence of ethanol. The microbial biosensor response was depend linearly on ethanol concentration between 0.5 and 7.5 mM with 2 min response time. In the optimization studies of the microbial biosensor the most suitable microorganism amount were found as 4.42 mg cm(-2) and also phosphate buffer (pH:7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In the characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the biosensor response, operational and storage stability were carried out.  相似文献   

5.
Using the plasmid pCW, high-level expression of rat cytochrome p4501A1 (CYP1A1) has been achieved by making NH(2)-terminal translational fusions to bacterial leader sequences ompA (ompA-1A1/pCW). The construct ompA-1A1 was compared with an expression construct in which the Ala codon GCT was placed in the second position and 5'-terminal codons were maximized for A T content (1A1/pCW). Both constructs produced spectrally active, functional protein. However, the ompA-1A1 fusion gave higher levels of expression, and a marked improvement in the recovery of active P450 in bacterial membrane fractions, when compared with the construct 1A1/pCW. The expressed 1A1 from the construct ompA-1A1/pCW in bacterial membrane fractions were collected and immobilized in nano-Na-montmorillonite (nano-SWy-2) and dihexadecylphosphate (DHP) composite film. The direct electrochemistry of CYP1A1 in a nano-SWy-2-DHP film on an edge-plane pyrolytic graphite electrode (EPG) has been obtained and the catalytic activity of the enzyme to benzo[a]pyrene has been investigated by the cyclic voltammetry. The immobilized CYP1A1 displayed a pair of redox peaks with a formal potential of -0.36 mV in pH 7.0 O(2)-free phosphate buffers at scan rate of 1 V s(-1). The CYP1A1 in the nano-SWy-2-DHP film retained its bioactivity and could catalyze the reduction of dissolved oxygen. Upon the addition of its substrate benzo[a]pyrene (B[a]P) to the air-saturated solution, the reduction peak current of dissolved oxygen increased, which indicates the catalytic behavior of CYP1A1 to B[a]P. By amperometry a calibration linear range for B[a]P was obtained to be 3.31-16.56 μM with a sensitivity of 58.57 μA mM(-1). And the apparent Michaelis-Menten constant for the electrocatalytic activity of CYP1A1 was estimated to be 46.27 μM for B[a]P.  相似文献   

6.
An amperometric principle based biosensor containing tissues of cucumber, rich in ascorbic acid oxidase, was used for the detection of organophosphorous (OP) pesticide ethyl paraoxon, which inhibits the activity of ascorbic acid oxidase. The optimal concentration of ascorbic acid used as substrate was found to be 5.67 mM. The biosensor response was found to reach steady state within 2 min. A measurable inhibition (> 10%) was obtained with 10 min incubation of the enzyme electrode with different concentrations of the pesticide. There was a linear relationship between the percentage of inhibition of the enzyme substrate reaction and the pesticide (ethyl paraoxon) concentration in the range 1-10 ppm with a regression value 0.9942.  相似文献   

7.
ZnO:Co nanoclusters were synthesized by nanocluster-beam deposition with averaged particle size of 5 nm and porous structure, which were for the first time adopted to construct a novel amperometric glucose biosensor. Glucose oxidase was immobilized into the ZnO:Co nanocluster-assembled thin film through Nafion-assisted cross-linking technique. Due to the high specific active sites and high electrocatalytic activity of the ZnO:Co nanoclusters, the constructed glucose biosensor showed a high sensitivity of 13.3 microA/mA cm2. The low detection limit was estimated to be 20 microM (S/N=3) and the apparent Michaelis-Menten constant was found to be 21 mM, indicating the high affinity of the enzyme on ZnO:Co nanoclusters to glucose. The results show that the ZnO:Co nanocluster-assembled thin films with nanoporous structure and nanocrystallites have potential applications as platforms to immobilize enzyme in biosensors.  相似文献   

8.
A renewable immunosensor consisting of an `epoxygraphite' biocomposite containing silver and tetracyanoquinodimethane (TCNQ) is described. These compounds enhance conductivity allowing the use of a smaller potential (0.28 v) which, in turn, enhances selectivity. This sensor, which may be renewed by simple polishing of its surface, was employed to detect human IgG using peroxidase-coupled anti-human IgG.  相似文献   

9.
A method is described for construction of an amperometric xanthine biosensor based on covalent Immobilization of xanthine oxidase (XOD) onto citrate capped silver nanoparticles deposited on Au electrode surface through cysteine self assembled monolayers (SAM). The biosensor showed optimum response within 5 s at pH 7.0 and 35 °C, when polarized at 0.5 V vs. Ag/AgCl. The linear working range of biosensor for xanthine was from 2 to 16 μM, with a detection limit of 0.15 μM and sensitivity of 0.17 mA/μM/cm2. The mean analytical recovery of exogenously added xanthine in fish meat extract (5 g/l and 10 g/l) was 96.2 ± 2.3% and 95.2 ± 3.4%, respectively. Within and between batches coefficients of variation were <2.6% and <3.4%, respectively. The biosensor measured xanthine in fish, chicken, pork, and beef meat. The enzyme electrode lost 20% of its initial activity after its regular 180 uses over a period of 60 days, when stored at 4 °C in dry state.  相似文献   

10.
The development of a novel biosensor system for measuring the respiratory activity of whole eubacterial cells is described. The biosensor incorporates a physically immobilized layer of cells held in intimate contact with an amperometric transducing electrode and uses a chemical mediator, potassium ferricyanide, to divert electrons from the respiratory system of the bacteria to the poised electrode. The current thus produced is proportional to the level of respiratory activity of the immobilized bacterial cells and can be monitored by a computer interface system. The paper outlines the principles of the biosensor and describes the results of a screen of potentially useful eubacteria. Also described are the effects of physical parameters on the sensor and a strategy for the long term preservation of the biosensor by freeze-drying.  相似文献   

11.
Gouda  M.D.  Thakur  M.S.  Karanth  N.G. 《Biotechnology Techniques》1997,11(9):653-655
An amperometric biosensor consisting of two enzyme membranes, one a potato layer rich in acid phosphatase and the other immobilized glucose oxidase membrane, when operated in conjunction with a Clark type dissolved O 2 elec-trode, detected the pesticide, Paraoxon, at 1 g/ml. The advantage of this biosensor is that the inhibition of acid phosphatase by the pesticide is reversible and thereby eliminates the problem of enzyme inactivation and the necessity for its reactivation which is not efficient.  相似文献   

12.
Four wastewater samples of different treatment qualities; untreated, alarm, alert and normal, from a Swedish chemi-thermo-mechanical pulp mill and pure water were investigated using an amperometric bio-electronic tongue in a batch cell. The aim was to explore enzymatically modified screen-printed amperometric sensors for the discrimination of wastewater quality and to counteract the inherent drift. Seven out of eight platinum electrodes on the array were modified with four different enzymes; tyrosinase, horseradish peroxidase, acetyl cholinesterase and butyryl cholinesterase. At a constant potential the current intensity on each sensor was measured for 200s, 100s before injection and 100s after injection of the sample. The dynamic biosensor response curves from the eight sensors were used for principal component analysis (PCA). A simple baseline and sensitivity correction equivalent to multiplicative drift correction (MDC), using steady state intensities of reference sample (catechol) recordings, was employed. A clear pattern emerged in perfect agreement with prior knowledge of the samples explaining 97% of the variation in the data by two principal components (PCs). The first PC described the treatment quality of the samples and the second PC described the difference between treated and untreated samples. Horseradish peroxidase and pure platinum sensors were found to be the determinant sensors, while the rest did not contribute much to the discrimination. The wastewater samples were characterized by the chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), inhibition of nitrification, inhibition of respiration and toxicity towards Vibrio fischeri using Microtox, the freshwater alga Pseudokirchneriella subcapita and the freshwater crustacean Daphnia magna.  相似文献   

13.
The determination of phenolic compounds is significant given its toxicity, even at very low concentration levels. Amperometric determination of phenols is a simple technique available. Direct oxidation of phenols can be used, but another possibility is the use of polyphenol oxidase (tyrosinase) enzyme biosensors that oxidises the phenolic compounds into their corresponding quinones. Reduction of the resulting quinones accomplishes the amplification of the amperometric signal, as long as the result of the reduction process is the corresponding cathecol, this being able to be oxidised again by the polyphenol oxidase immobilized on the surface of the biosensor. In this communication, simultaneous determination of different phenols was carried out combining biosensor measurements with chemometric tools, in what is known as electronic tongue. The departure information used was the overlapped reduction voltammogram generated with the amperometric biosensor based on polyphenol oxidase. Artificial Neural Networks (ANN) were used for extraction and quantification of each compound. Phenol, cathecol and m-cresol formed the three-analyte study case resolved in this work. Good prediction ability was attained, and so, the separate quantification of these three phenols was accomplished.  相似文献   

14.
A screen-printed enzyme electrode based on flavocytochrome P450scc (RfP450scc) for amperometric determination of cholesterol has been developed. A one-step method for RfP450scc immobilization in the presence of glutaraldehyde or by entrapment of enzyme within a hydrogel of agarose is discussed. The sensitivity of the biosensor based on immobilization procedures of flavocytochrome P450scc by glutaric aldehyde is 13.8 nA microM(-1) and the detection limit is 300 microM with a coefficient of linearity 0.98 for cholesterol in the presence of sodium cholate as detergent. The detection limits and the sensitivity of the agarose-based electrode are 155 microM and 6.9 nA microM(-1) with a linearity coefficient of 0.99. For both types of electrodes, the amperometric response to cholesterol in the presence of detergent was rather quick (1.5-2 min).  相似文献   

15.
A novel L-arginine-selective amperometric bi-enzyme biosensor based on recombinant human arginase I isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer was placed onto a polyaniline-Nafion composite platinum electrode and covered with a calcium alginate gel. The developed sensor revealed a good selectivity to L-arginine. The sensitivity of the biosensor was 110 ± 1.3 nA/(mM mm(2)) with the apparent Michaelis-Menten constant (K(M)(app)) derived from an L-arginine (L-Arg) calibration curve of 1.27 ± 0.29 mM. A linear concentration range was observed from 0.07 to 0.6mM, a limit of detection being 0.038 mM and a response time - 10s. The developed biosensor demonstrated good storage stability. A laboratory prototype of the proposed amperometric biosensor was applied to the samples of three commercial pharmaceuticals ("Tivortin", "Cytrarginine", "Aminoplazmal 10% E") for L-Arg testing. The obtained L-Arg-content values correlated well with those declared by producers.  相似文献   

16.
A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated.  相似文献   

17.
A biosensor design involving coimmobilization of fructose dehydrogenase (FDH) and inulinase (INU) on a gold nanoparticle-cysteamine (Cyst) self-assembled monolayer (SAM)-modified gold electrode (Au(coll)-Cyst-AuE), for the determination of the carbohydrate inulin in foodstuffs, is reported. Tetrathiafulvalene (TTF), used as the mediator, was also coimmobilized by crosslinking with glutaraldehyde. INU catalyzes the hydrolysis of inulin, forming fructose that is detected through the fructose dehydrogenase system by the electrochemical oxidation of TTF at the bioelectrode. The variables involved in the preparation and performance of both the single enzyme FDH biosensor and the bienzyme inulin biosensor were optimized. The FDH-Au(coll)-Cyst-AuE biosensor exhibited rapid and sensitive response to fructose, allowing the obtention of improved analytical characteristics for the determination of fructose with respect to other FDH electrochemical biosensors. Moreover, the lifetime of this biosensor was 35 days. The bienzyme INU/FDH-Au(coll)-Cyst-AuE biosensor provided a calibration plot for inulin in the (5-100)x10(-6) M linear range, with a detection limit of 6.6 x 10(-7) mol L(-1). One single bienzyme biosensor responded within the control limits, set at +/-3x the standard deviation of the currents measured on the first day of use, for more than 5 months. Furthermore, the biosensor exhibited high selectivity with respect to other carbohydrates. The usefulness of the biosensor was evaluated by the rapid determination of inulin in food products involving minimization of the fructose interference.  相似文献   

18.
We attempted to develop a screen-printed biosensor for the amperometric determination of L-lactate dehydrogenase (LDH) level on the basis of NAD(+)/NADH-dependent dehydrogenase reaction. The printing ink for the working electrode consisted of L-lactate, NAD(+), composite polymer of hydroxyethyl cellulose with ethylene glycol, 3,4-dihydroxybenzaldehyde (3,4-DHB) as an electron transferring mediator, and graphite as the conducting material. The 3,4-DHB was electropolymerized on the carboneous working electrode by potential cycling between -200 and +300 mV vs. Ag/AgCl reference electrode. Through the electrocatalytic reaction with immobilized 3,4-DHB, the NADH generated by the LDH reaction could be efficiently oxidized at lower potential than the unmodified carbon electrode. The analytical performance of the electrode was characterized in terms of linear sensing range and detection limit for LDH. The response from the developed biosensor was linear up to 500 U/l of LDH, and the detection limit of 50 U/l was observed at the signal-to-noise ratio of 3.  相似文献   

19.
A new amperometric whole cell biosensor based on Saccharomyces cerevisiae immobilized in gelatin was developed for selective determination of vitamin B1 (thiamine). The biosensor was constructed by using gelatin and crosslinking agent glutaraldehyde to immobilize S. cerevisiae cells on the Teflon membrane of dissolved oxygen (DO) probe used as the basic electrode system combined with a digital oxygen meter. The cells were induced by vitamin B1 in the culture medium, and the cells used it as a carbon source in the absence of glucose. So, when the vitamin B1 solution is injected into the whole cell biosensor system, an increase in respiration activity of the cells results from the metabolic activity and causes a decrease in the DO concentration of interval surface of DO probe related to vitamin B1 concentration. The response time of the biosensor is 3 min, and the optimal working conditions of the biosensor were carried out as pH 7.0, 50mM Tris-HCl, and 30 degrees C. A linear relationship was obtained between the DO concentration decrease and vitamin B1 concentration between 5.0 x 10(-3) and 10(-1) microM. In the application studies of the biosensor, sensitive determination of vitamin B1 in the vitamin tablets was investigated.  相似文献   

20.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a copper dispersed sol-gel derived ceramic-graphite composite. The copper in the biocomposite offers excellent electrocatalytic activity towards the reduction (at -0.2 V) as well as oxidation (at +0.45 V) of hydrogen peroxide liberated in the enzymatic reaction enabling sensitive and selective determination of glucose. A linear response to glucose in the concentration range between 2.7 x 10(-5) to 4.0 x 10(-3) M with a correlation coefficient of 0.9987 and 4.0 x 10(-5) to 5.6 x 10(-3) M with a correlation coefficient of 0.9989 were observed with the electrocatalytic reduction and oxidation, respectively. Ascorbic acid and uric acid did not interfere with the glucose measurement during catalytic reduction at -0.2 V, a Nafion membrane was used to eliminate these interferences during the electrocatalytic oxidation at +0.45 V. The combination of copper catalysis and the promising feature of sol-gel biocomposite favor the sensitive and selective determination of glucose with improved analytical capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号