首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatic changes are projected to result in rapid adaptive events with considerable phenotypic shifts. In order to reconstruct the impact of increased mean water temperatures during past decades and to reveal possible thermal micro‐evolution, we applied a resurrection ecology approach using dormant eggs of the freshwater keystone species Daphnia galeata. To this end, we compared the adaptive response of D. galeata clones from Lake Constance of two different time periods, 1965–1974 (“historical”) versus 2000–2009 (“recent”), to experimentally increased temperature regimes. In order to distinguish between genetic versus environmentally induced effects, we performed a common garden experiment in a flow‐through system and measured variation in life‐history traits. Experimental thermal regimes were chosen according to natural temperature conditions during the reproductive period of D. galeata in Central European lakes, with one additional temperature regime exceeding the currently observable maximum (+2°C). Increased water temperatures were shown to significantly affect measured life‐history traits, and significant “temperature × clonal age” interactions were revealed. Compared to historical clones, recent clonal lineages exhibited a shorter time to first reproduction and a higher survival rate, which may suggest temperature‐driven micro‐evolution over time but does not allow an explicit conclusion on the adaptive nature of such responses.  相似文献   

2.
High‐throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole‐genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost‐prohibitive, too time‐consuming, and often constitute a “data overkill.” Rapid and reliable identification of species (and populations) that is also cost‐effective is made possible by species‐specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR‐RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available “high resolution” genomic information. Yet, our work also shows that even in the best‐case scenario, when whole‐genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.  相似文献   

3.
When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.  相似文献   

4.
5.
Epithelial tissues respond to a wide variety of environmental and genotoxic stresses. As an adaptive mechanism, cells can deviate from their natural paths to acquire new identities, both within and across lineages. Under extreme conditions, epithelial tissues can utilize “shape‐shifting” mechanisms whereby they alter their form and function at a tissue‐wide scale. Mounting evidence suggests that in order to acquire these alternate tissue identities, cells follow a core set of “tissue logic” principles based on developmental paradigms. Here, we review the terminology and the concepts that have been put forward to describe cell plasticity. We also provide insights into various cell intrinsic and extrinsic factors, including genetic mutations, inflammation, microbiota, and therapeutic agents that contribute to cell plasticity. Additionally, we discuss recent studies that have sought to decode the “syntax” of plasticity—i.e., the cellular and molecular principles through which cells acquire new identities in both homeostatic and malignant epithelial tissues—and how these processes can be manipulated for developing novel cancer therapeutics.  相似文献   

6.
Many species maintain territories, but the degree of overlap between territories and the level of aggression displayed in territorial conflicts can vary widely, even within species. Greater territorial overlap may occur when neighboring territory holders are close relatives. Animals may also differentiate neighbors from strangers, with more familiar neighbors eliciting less‐aggressive responses during territorial conflicts (the “dear enemy” effect). However, research is lacking in how both kinship and overlap affect territorial conflicts, especially in group‐living species. Here, we investigate kinship, territorial overlap, and territorial conflict in a habituated wild population of group‐living cooperatively breeding birds, the southern pied babbler Turdoides bicolor. We find that close kin neighbors are beneficial. Territories overlap more when neighboring groups are close kin, and these larger overlaps with kin confer larger territories (an effect not seen for overlaps with unrelated groups). Overall, territorial conflict is costly, causing significant decreases in body mass, but conflicts with kin are shorter than those conducted with nonkin. Conflicts with more familiar unrelated neighbors are also shorter, indicating these neighbors are “dear enemies.” However, kinship modulates the “dear enemy” effect; even when kin are encountered less frequently, kin elicit less‐aggressive responses, similar to the “dear enemy” effect. Kin selection appears to be a main influence on territorial behavior in this species. Groups derive kin‐selected benefits from decreased conflicts and maintain larger territories when overlapping with kin, though not when overlapping with nonkin. More generally, it is possible that kinship extends the “dear enemy” effect in animal societies.  相似文献   

7.
Most Central African rainforests are characterized by a remarkable abundance of light‐demanding canopy species: long‐lived pioneers (LLP) and non‐pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash‐and‐burn farming activities, which abruptly ended in the 19th century. This “human disturbance” hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one‐ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short‐lived pioneers (SLP) and a single abundant shade‐tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one‐time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the “human disturbance” hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long‐term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present‐day forest composition is a result of adaptation to late‐Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.  相似文献   

8.
The cost of reproduction plays a central role in evolutionary theory, but the identity of the underlying mechanisms remains a puzzle. Oxidative stress has been hypothesized to be a proximate mechanism that may explain the cost of reproduction. We examine three pathways by which oxidative stress could shape reproduction. The “oxidative cost” hypothesis proposes that reproductive effort generates oxidative stress, while the “oxidative constraint” and “oxidative shielding” hypotheses suggest that mothers mitigate such costs through reducing reproductive effort or by pre‐emptively decreasing damage levels, respectively. We tested these three mechanisms using data from a long‐term food provisioning experiment on wild female banded mongooses (Mungos mungo). Our results show that maternal supplementation did not influence oxidative stress levels, or the production and survival of offspring. However, we found that two of the oxidative mechanisms co‐occur during reproduction. There was evidence of an oxidative challenge associated with reproduction that mothers attempted to mitigate by reducing damage levels during breeding. This mitigation is likely to be of crucial importance, as long‐term offspring survival was negatively impacted by maternal oxidative stress. This study demonstrates the value of longitudinal studies of wild animals in order to highlight the interconnected oxidative mechanisms that shape the cost of reproduction.  相似文献   

9.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

10.
Enzymes are well known for their catalytic abilities, some even reaching “catalytic perfection” in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic chemistry while others share a substrate‐handle binding motif, for example, for a particular phosphate group. This suggests that some families emerged through a “substrate‐handle‐binding‐first” mechanism (“binding‐first” for brevity) instead of “chemistry‐first” and we are, therefore, left to wonder what the role of non‐catalytic binders might have been during enzyme evolution. In the last of their eight seminal, back‐to‐back articles from 1976, John Albery and Jeremy Knowles addressed the question of enzyme evolution by arguing that the simplest mode of enzyme evolution is what they defined as “uniform binding” (parallel stabilization of all enzyme‐bound states to the same degree). Indeed, we show that a uniform‐binding proto‐catalyst can accelerate a reaction, but only when catalysis is already present, that is, when the transition state is already stabilized to some degree. Thus, we sought an alternative explanation for the cases where substrate‐handle‐binding preceded any involvement of a catalyst. We find that evolutionary starting points that exhibit negative catalysis can redirect the reaction''s course to a preferred product without need for rate acceleration or product release; that is, if they do not stabilize, or even destabilize, the transition state corresponding to an undesired product. Such a mechanism might explain the emergence of “binding‐first” enzyme families like the aldolase superfamily.  相似文献   

11.
  1. Length and depth of fish larvae are part of the fundamental measurements in many marine ecology studies involving early fish life history. Until now, obtaining these measurements has required intensive manual labor and the risk of inter‐ and intra‐observer variability.
  2. We developed an open‐source software solution to semi‐automate the measurement process and thereby reduce both time consumption and technical variability. Using contrast‐based edge detection, the software segments images of a fish larva into “larva” and “background.” Length and depth are extracted from the “larva” segmentation while taking curvature of the larva into consideration. The graphical user interface optimizes workflow and ease of usage, thereby reducing time consumption for both training and analysis. The software allows for visual verification of all measurements.
  3. A comparison of measurement methods on a set of larva images showed that this software reduces measurement time by 66%–78% relative to commonly used software.
  4. Using this software instead of the commonly used manual approach has the potential to save researchers from many hours of monotonous work. No adjustment was necessary for 89% of the images regarding length (70% for depth). Hence, the only workload on most images was the visual inspection. As the visual inspection and manual dimension extraction works in the same way as currently used software, we expect no loss in accuracy.
  相似文献   

12.
Understanding and preserving intraspecific diversity (ISD) is important for species conservation. However, ISD units do not have taxonomic standards and are not universally recognized. The terminology used to describe ISD is varied and often used ambiguously. We compared definitions of terms used to describe ISD with use in recent studies of three fish taxa: sticklebacks (Gasterosteidae), Pacific salmon and trout (Oncorhynchus spp., “PST”), and lampreys (Petromyzontiformes). Life history describes the phenotypic responses of organisms to environments and includes biological parameters that affect population growth or decline. Life‐history pathway(s) are the result of different organismal routes of development that can result in different life histories. These terms can be used to describe recognizable life‐history traits. Life history is generally used in organismal‐ and ecology‐based journals. The terms paired species/species pairs have been used to describe two different phenotypes, whereas in some species and situations a continuum of phenotypes may be expressed. Our review revealed overlapping definitions for race and subspecies, and subspecies and ecotypes. Ecotypes are genotypic adaptations to particular environments, and this term is often used in genetic‐ and evolution‐based journals. “Satellite species” is used for situations in which a parasitic lamprey yields two or more derived, nonparasitic lamprey species. Designatable Units, Evolutionary Significant Units (ESUs), and Distinct Population Segments (DPS) are used by some governments to classify ISD of vertebrate species within distinct and evolutionary significant criteria. In situations where the genetic or life‐history components of ISD are not well understood, a conservative approach would be to call them phenotypes.

The terminology used to describe intraspecific diversity is varied and often used ambiguously. “Ecotype” was originally used to describe patterns in genes and ecology, and recent studies employing this term tend to report a genetic basis in ISD. By contrast, “life history” describes biological parameters that affect demography, and this term tends to be used in organismal‐ and ecology‐based journals.  相似文献   

13.
14.
Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell–cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis‐ and trans‐synaptic protein complexes. Here, we present a 2.7 Å cryo‐EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C‐rich, YD‐shell, and ABD domains. A 1.5 Å crystal structure of the C‐rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS‐based rigid‐body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium‐dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis‐dimer is compatible with homomeric trans‐interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis‐ and trans‐synaptic interactions to construct functional neuronal circuits.  相似文献   

15.
Research on water exchange in frogs has historically assumed that blood osmotic potential drives water exchange between a frog and its environment, but here we show that the “seat patch” (the primary site of water exchange in many anurans), or other sites of cutaneous water uptake, act as an anatomic “compartment” with a water potential controlled separately from water potential of the blood, and the water potential of that compartment can be the driver of water exchange between the animal and its environment. We studied six frog species (Xenopus laevis, Rana pipiens, Rcatesbeiana, Bufo boreas, Pseudacris cadaverina, and Pregilla) differing in ecological relationships to environmental water. We inferred the water potentials of seat patches from water exchanges by frogs in sucrose solutions ranging in water potential from 0 to 1000‐kPa. Terrestrial and arboreal species had seat patch water potentials that were more negative than the water potentials of more aquatic species, and their seat patch water potentials were similar to the water potential of their blood, but the water potentials of venters of the more aquatic species were different from (and less negative than) the water potentials of their blood. These findings indicate that there are physiological mechanisms among frog species that can be used to control water potential at the sites of cutaneous water uptake, and that some frogs may be able to adjust the hydric conductance of their skin when they are absorbing water from very dilute solutions. Largely unexplored mechanisms involving aquaporins are likely responsible for adjustments in hydric conductance, which in turn, allow control of water potential at sites of cutaneous water uptake among species differing in ecological habit and the observed disequilibrium between sites of cutaneous water uptake and blood water potential in more aquatic species.  相似文献   

16.
Fluoxetine is an antidepressant medicine causing relaxation and mood improvement in people, with silencing certain personality traits in some cases. The question arise if such phenomena can be observed in nontarget organisms such as fish. Fluoxetine affects fishes behavior; however, it is not known if the medicine affects its “personality.” This study aimed to evaluate the reaction of the invasive Neogobius fluviatilis and native Gobio gobio individuals to fluoxetine at environmental concentration of 360 ng/L. We prepared three variants of the experiments: (a) behavioral trials with unexposed fishes, (b) behavioral trials with the same fishes after 21 days of fluoxetine exposure, and (c) behavioral trials with the same fishes after 21‐day depuration period, that is, without fluoxetine. The fishes reaction time (RT), that is, difference in time spent on reaching food with and without the necessity of overcoming the obstacle, was analyzed. Additionally, the personality, bold or shy, traits of each fish individual, was assigned. The results indicated that environmental concentrations of the antidepressant influenced RT. The average RT of the fishes cultured with fluoxetine was by 7‐min shorter in comparison with the nonexposed control. Share of individuals exposed to fluoxetine assigned as bold raised to 71.4% in comparison with 46.4% in nonexposed control. This sheds new light on wild fishes behavior caught from freshwater. Environmental concentrations of the antidepressant influenced the time of fishes reaction and share individuals assigned as bold. Moreover, 21‐day recovery lasting might be not enough to get fluoxetine effect on fishes.  相似文献   

17.
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life‐history strategy is unusual in warm deserts. We used data from a 22‐year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete‐time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant‐season mortality. It relies on a stochastically varying environment with high inter‐annual variation in precipitation for persistence, but without a long‐lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life‐history strategy further along the spectrum from “slower” to “faster” relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life‐history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.  相似文献   

18.
Speciation is the process through which reproductive isolation develops between distinct populations. Because this process takes time, speciation studies often necessarily examine populations within a species that are at various stages of divergence. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is comprised of two strains (R = Rice & C = Corn) that serve as a novel system to explore population divergence in sympatry. Here, we use ddRADSeq data to show that fall armyworm strains in the field are largely genetically distinct, but some interstrain hybridization occurs. Although we detected F1 hybrids of both R‐ and C‐strain maternal origin, only hybrids with R‐strain mtDNA were found to contribute to subsequent generations, possibly indicating a unidirectional barrier to gene flow. Although these strains have been previously defined as “host plant‐associated,” we recovered an equal proportion of R‐ and C‐strain moths in fields dominated by C‐strain host plants. As an alternative to host‐associated divergence, we tested the hypothesis that differences in nightly activity patterns could account for reproductive isolation by genotyping temporally collected moths. Our data indicates that strains exhibit a significant shift in the timing of their nightly activities in the field. This divergence in phenology creates a prezygotic reproductive barrier that likely maintains the genetic isolation between strains. Thus, we conclude that it may be ecologically inaccurate to refer to the C‐ and R‐ strain as “host‐associated” and they should more appropriately be considered “allochronic strains.”  相似文献   

19.
Staphylococcus epidermidis is a skin-resident bacterium and a major cause of biomaterial-associated infections. The transition from residing on the skin to residing on an implanted biomaterial is accompanied by regulatory changes that facilitate bacterial survival in the new environment. These regulatory changes are dependent upon the ability of bacteria to “sense” environmental changes. In S. epidermidis, disparate environmental signals can affect synthesis of the biofilm matrix polysaccharide intercellular adhesin (PIA). Previously, we demonstrated that PIA biosynthesis is regulated by tricarboxylic acid (TCA) cycle activity. The observations that very different environmental signals result in a common phenotype (i.e. increased PIA synthesis) and that TCA cycle activity regulates PIA biosynthesis led us to hypothesize that S. epidermidis is “sensing” disparate environmental signals through the modulation of TCA cycle activity. In this study, we used NMR metabolomics to demonstrate that divergent environmental signals are transduced into common metabolomic changes that are “sensed” by metabolite-responsive regulators, such as CcpA, to affect PIA biosynthesis. These data clarify one mechanism by which very different environmental signals cause common phenotypic changes. In addition, due to the frequency of the TCA cycle in diverse genera of bacteria and the intrinsic properties of TCA cycle enzymes, it is likely the TCA cycle acts as a signal transduction pathway in many bacteria.  相似文献   

20.
Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non‐sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant‐derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+‐ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+‐ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits “cardenolide resistance” and “cardenolide sequestration,” we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+‐ATPase nor sequestering cardenolides, growth was not affected in the non‐sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+‐ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+‐ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide‐containing diet for their entire lifetime but not when adults were transferred to non‐toxic sunflower seeds. We speculate that the resistant Na+/K+‐ATPase of milkweed bugs is selected for working optimally in a “toxic environment,” that is, when sequestered cardenolides are stored in the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号