首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
With growing urbanization, it is becoming increasingly important to design cities in a manner that sustains and enhances biodiversity and ecosystem services. Native bees are critical pollinators that have experienced substantive declines over the past several decades. These declines have captured the attention of the public, particularly urbanites, prompting a large interest in protecting pollinators and their habitats in cities across North America and Europe. Unfortunately, we currently lack research about specific features of urban environments that can enhance the fitness of pollinators. We carried out an intensive study of Bombus impatiens, the Common Eastern Bumblebee, in the city of Toronto (Canada''s largest city), to better understand landscape parameters that provide high‐quality habitat for this species and likely other generalist bees. We divided the city into 270 grid cells and sampled a large number of worker bees, which were then genotyped at twelve hypervariable microsatellite loci. The genetic data allowed us to quantify the effective number of colonies and foraging distance for bumblebees in our study area. We then asked how the city''s landscape and human population demography and income are associated with the availability of high‐quality habitat for B. impatiens. Several aspects of Toronto''s landscape influenced colony density and foraging range. Urbanization had a clear effect on both colony density and foraging distance of workers. On the other hand, functional (i.e., not cosmetic) green space was often associated with higher quality habitats for bumblebees. Our study suggests several planning strategies to enhance habitat quality for bumblebees and other pollinators in cities.  相似文献   

2.
Bumblebee flight distances in relation to the forage landscape   总被引:2,自引:1,他引:1  
1. Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We mass-marked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1.5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.  相似文献   

3.
We examined how queens of the primitively eusocial wasp, Polistes fuscatus, stimulate foraging by workers in 10 small, post-worker-emergence field colonies. We experimentally increased colony needs, including needs of the brood, by removing a colony's most active foragers (thereby decreasing the colony's foraging rate), and found that the queen significantly increased both her level of activity and rate of aggressive interactions. Most aggressive interactions were directed at dominant workers. Removal of a colony's least active foragers, however, produced no such effect. Our results, together with those of Reeve & Gamboa (1983, 1987), indicate that queens are sensitive to brood needs, and that they behaviorally regulate worker foraging to match brood needs by increasing their level of activity and rate of aggressive interactions.  相似文献   

4.
Summary: Size polymorphism is an important life history trait in bumblebees with strong impact on individual behavior and colony organization. Within a colony larger workers tend to serve as foragers, while smaller workers fulfill in-hive tasks. It is often assumed that size-dependent division of labor relates to differences in task performance. In this study we examined size-dependent interindividual variability in foraging, i.e. whether foraging behavior and foraging capability of bumblebee workers are affected by their size. We observed two freely foraging Bombus terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibited a significantly higher foraging rate than small foragers. None of the other three foraging parameters was affected by worker size. Thus, large foragers contributed disproportionately more to the current nectar influx of their colony. We provide a detailed discussion of the possible proximate mechanisms underlying the differences in foraging rate.  相似文献   

5.
The widespread use of protective covers in horticulture represents a novel landscape‐level change, presenting the challenges for crop pollination. Honeybees (Apis mellifera L) are pollinators of many crops, but their behavior can be affected by conditions under covers. To determine how netting crop covers can affect honeybee foraging dynamics, colony health, and pollination services, we assessed the performance of 52 nucleus honeybee colonies in five covered and six uncovered kiwifruit orchards. Colony strength was estimated pre‐ and postintroduction, and the foraging of individual bees (including pollen, nectar, and naïve foragers) was monitored in a subset of the hives fitted with RFID readers. Simultaneously, we evaluated pollination effectiveness by measuring flower visitation rates and the number of seeds produced after single honeybee visits. Honeybee colonies under cover exhibited both an acute loss of foragers and changes in the behavior of successful foragers. Under cover, bees were roughly three times less likely to return after their first trip outside the hive. Consequently, the number of adult bees in hives declined at a faster rate in these orchards, with colonies losing on average 1,057 ± 274 of their bees in under two weeks. Bees that did forage under cover completed fewer trips provisioning their colony, failing to reenter after a few short‐duration trips. These effects are likely to have implications for colony health and productivity. We also found that bee density (bees/thousand flowers) and visitation rates to flowers were lower under cover; however, we did not detect a resultant change in pollination. Our findings highlight the need for environment‐specific management techniques for pollinators. Improving honeybee orientation under covers and increasing our understanding of the effects of covers on bee nutrition and brood rearing should be primary objectives for maintaining colonies and potentially improving pollination in these systems.  相似文献   

6.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

7.
Importation of exotic bumblebees for greenhouse pollination may be restricted in México, thus making it necessary to evaluate the potential of native species as pollinators in enclosures. We studied the foraging activity and fruit production of tomato using one colony of Nannotrigona perilampoides (NP) and one colony of Bombus impatiens (BI) in greenhouses with ≈1000 plants. Mechanical vibration (MV) was included as a test treatment. The foraging activity was measured as the number of flowers visited within 5 min, the time spent on a flower collecting pollen, the number of visits that a flower received and the duration of a foraging trip. BI collected pollen more rapidly, visited more flowers within 5 min and did more visits per flower when compared with NP that also lasted longer in their trips. Significant correlations were found between environmental variables and the number of bees entering the hive and the number of bees on the flowers. For NP, the highest correlation was found for light intensity whilst in BI a negative effect of environmental temperature was detected. Regarding the quantity of fruit, BI resulted in higher fruit set when compared with NP, but the latter performed similarly to MV. However, the weight of the fruit and seed number was significantly higher for BI when compared with NP, and this was higher than for MV. Our results demonstrate that at the densities of tomato plants tested, one colony of BI was more efficient pollinator when compared with NP. We suggest that pollination efficiency of NP could have been limited by a reduced number of foragers on the plants at a given time and their limited flight range when compared with BI. Therefore, it will be necessary to evaluate if increasing densities of colonies of NP could improve tomato yield in tropical greenhouses.  相似文献   

8.
If the cognitive performance of animals reflects their particular ecological requirements, how can we explain appreciable variation in learning ability amongst closely related individuals (e.g. foraging workers within a bumble bee colony)? One possibility is that apparent ‘errors’ in a learning task actually represent an alternative foraging strategy. In this study we investigate the potential relationship between foraging ‘errors’ and foraging success among bumble bee (Bombus terrestris) workers. Individual foragers were trained to choose yellow, rewarded flowers and ignore blue, unrewarded flowers. We recorded the number of errors (visits to unrewarded flowers) each bee made during training, then tested them to determine how quickly they discovered a more profitable food source (either familiar blue flowers, or novel green flowers). We found that error prone bees discovered the novel food source significantly faster than accurate bees. Furthermore, we demonstrate that the time taken to discover the novel, more profitable, food source is positively correlated with foraging success. These results suggest that foraging errors are part of an ‘exploration’ foraging strategy, which could be advantageous in changeable foraging environments. This could explain the observed variation in learning performance amongst foragers within social insect colonies.  相似文献   

9.
10.
One of the most conspicuous activities of worker bees inside a hive is the shaking of other workers. This shaking has long been suspected to be a communication behavior, but its information content and function have until recently remained mysterious. Prior studies of the colony-level patterns of the production of the shaking signal suggest strongly that this signal serves to arouse workers to greater activity, such as at times of good foraging. Data from our observations of individual bees bolster the hypothesis that the shaking signal informs workers to prepare for a higher level of activity. We followed foragers in a colony whose only source of ‘nectar’ was a sugar-water feeder and discovered that when the feeder was left empty for 1–3 d and then refilled, the first bees to find the food initially produced only shaking signals upon return to the hive. It was not until they had completed several trips to the feeder that they began to produce waggle dances. Evidently, the shaking signal and the waggle dance function together to stimulate a colony's foragers to activity.  相似文献   

11.
1. A model is described that evaluates the maximum economic foraging range in central place foragers by using optimality criteria to discriminate between foraging sites at different distances from the forager's central place. 2. The basic model can be varied to suit foragers that optimise either their rate of net energy uptake or their foraging efficiency. 3. The model requires specification of the time and energy budgets of travel and foraging, and of the rewards obtainable at potential foraging sites. 4. The specific case of bumblebees, whose foraging ranges are poorly known, is considered. 5. Numerical solutions of the model for parameter values that represent bumblebees and their forage predict economic foraging ranges exceeding several kilometres. The model demonstrates that economics alone can explain extensive flight ranges in bees.  相似文献   

12.
Bumblebees of Bombus terrestris are essential pollinators in natural and managed ecosystems. Their foraging ability relies on the individual morphology, task allocation within the colony, and external factors, such as light intensity. The foraging activities of commercial bumblebees can sometimes be impaired, especially in the artificial and weak light intensities of greenhouses at high altitudes. Here we investigated whether the eagerness (or willingness) to forage of bumblebee colonies in different light conditions is correlated with the light sensitivity of bumblebees colonies and/or different external morphological parameters. The initial foraging capacity of bumblebee colonies correlated with their light sensitivity. However, light sensitive bumblebee colonies did not necessarily had a higher foraging activity at lower light intensities. Differences in initial foraging capacity and light sensitivity among colonies could not be explained by the external morphological parameters. In conclusion, our data illustrated that the recruitment to forage in artificial low light is less impaired in light sensitive colonies, and that not only the external morphology parameters determine the light sensitivity of bumblebees and their eagerness to forage in weak light conditions. The data obtained here create a better understanding of which criteria are able to select towards light sensitive bumblebees and their link with the foraging capacity of these bumblebees.  相似文献   

13.
Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of movements leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, the addition of a negative reinforcement of movements leading to unrewarding flowers is necessary when flowers are patchily distributed. In environments with more complex spatial structures, the negative experiences of individual bees on flowers favour spatial segregation and efficient collective foraging. Our study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to guide future experimental programs.  相似文献   

14.
Honey bee colonies can respond to changing environmental conditions by showing plasticity in age related division of labor, and these responses are associated with changes in juvenile hormone. The shift from nest taks to foraging has been especially well characterized; foraging is associated with high juvenile hormone titers and high rates of juvenile hormone biosynthesis, and can be induced prematurely in young bees by juvenile hormone treatment or by a shortage of foragers. However, very few studies have been conducted that study plasticity in division of labor under naturally occurring changes in the environment. To gain further insight into how the environment and juvenile hormone influence foraging behavior, we measured juvenile hormone titers and rates of biosynthesis in workers during times of the year when colony activity in temperate climates is reduced: late fall, winter, and early spring. Juvenile hormone titers and rates of biosynthesis decreased in foragers in the fall as foraging diminished and bees became less active. This demonstration of a natural drop in juvenile hormone confirms and extends previous findings when bees were experimentally induced to revert from foraging to within-hive tasks. In addition, endocrine changes in foragers in the fall are part of a larger seasonally related phenomenon in which juvenile hormone levels in younger, pre-foraging bees also decline in the fall and then increase the following spring as colony activity increases. The seasonal decline in juvenile hormone in foragers was mimicked in summer by placing a honey bee colony in a cold room for 8 days. This suggests that seasonal changes in juvenile hormone are not related to photoperiod changes, but rather to changes in temperature and/or colony social structure that in turn influence endocrine and behavioral development. We also found that active foragers in the late winter and early spring had lower juvenile hormone levels than active foragers in late spring. In light of recent findings of a possible link between juvenile hormone and neuroanatomical plasticity in the bee brain, these results suggest that bees can forage with low juvenile hormone, after previous exposure to some threshold level of juvenile hormone leads to changes in brain structure.  相似文献   

15.
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies.  相似文献   

16.
Abstract. Cohorts of worker honey bees from a single parental hive, cross-fostered into colonies which differed in population and other colony parameters, were assessed for activities of enzymes involved in metabolic detoxication. Activities of glutathione S-transferase and mixed-function oxidase enzymes were negatively correlated with foster colony population, but positively correlated with the ratio of larvae (brood)/adult workers. Worker bees which had begun foraging had enzyme activity levels higher than any found in bees which were still performing in-hive duties. Elevated levels of detoxifying enzymes in colonies with low populations and high ratios of larvae/adults may be a protective mechanism to prevent poisoning of larvae by toxins brought to the colony by foragers.  相似文献   

17.
Novice foragers of social bees have to decide what food commodity to collect when they start foraging for the first time. In this decision making process two types of factors are involved: internal factors (the response threshold) and external factors (environmental and colony conditions). In this study we will focus on the importance of two external factors, pollen storage level and information from experienced foragers about food availability in the field, on the initial commodity choice of foragers of the stingless bee species Plebeia tobagoensis. We also studied the effect of the initial choice of individuals on their subsequent foraging career. This study was performed in a closed greenhouse compartment, where food availability and colony condition could be controlled. Information on food availability in the field from experienced foragers and pollen storage level both greatly influenced the initial commodity choice of individuals, with more choices for the commodity communicated by experienced foragers or lacking in storage. The initial choice of foragers is of importance for their future foraging career, although a substantial proportion of foragers did switch between food commodities. Because of the ability of novice foragers to become flexibly distributed over foraging tasks, social bees are able to react to changes in their environment without directly having to decrease foraging effort devoted to other foraging tasks. This, in combination with individual flexibility during foraging careers makes it possible for colonies of P. tobagoensis to forage efficiently in an ever-changing environment. Received 7 November 2005; revised 12 January 2006; accepted 16 February 2006.  相似文献   

18.
Abstract.  1. It has long been known that foraging bumblebee workers vary greatly in size, within species, and within single nests. This phenomenon has not been adequately explained. Workers of their relatives within the Apidae exhibit much less size variation.
2. For the bumblebee Bombus terrestris size, as measured by thorax width, was found to correspond closely with tongue length, so that larger bees are equipped to feed from deeper flowers.
3. The mean size of worker bees attracted to flowers was found to differ between plant species, and larger bees with longer tongues tended to visit deeper flowers.
4. Finally, handling time depended on the match between corolla depth and tongue length: large bees were slower than small bees when handling shallow flowers, but quicker than small bees when handling deep flowers.
5. Size variation within bumblebees may be adaptive, since it enables the colony as a whole to efficiently exploit a range of different flowers. Possible explanations for the marked differences in size variation exhibited by bumblebees compared with Apis species and stingless bees (Meliponinae) are discussed.  相似文献   

19.
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.  相似文献   

20.
Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号