首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parasite host shifts can impose a high selective pressure on novel hosts. Even though the coevolved systems can reveal fundamental aspects of host–parasite interactions, research often focuses on the new host–parasite relationships. This holds true for two ectoparasitic mite species, Varroa destructor and Varroa jacobsonii, which have shifted hosts from Eastern honey bees, Apis cerana, to Western honey bees, Apis mellifera, generating colony losses of these pollinators globally. Here, we study infestation rates and reproduction of V. destructor and V. jacobsonii haplotypes in 185 A. cerana colonies of six populations in China and Thailand to investigate how coevolution shaped these features. Reproductive success was mostly similar and low, indicating constraints imposed by hosts and/or mite physiology. Infestation rates varied between mite haplotypes, suggesting distinct local co‐evolutionary scenarios. The differences in infestation rates and reproductive output between haplotypes did not correlate with the virulence of the respective host‐shifted lineages suggesting distinct selection scenarios in novel and original host. The occasional worker brood infestation was significantly lower than that of drone brood, except for the V. destructor haplotype (Korea) from which the invasive lineage derived. Whether mites infesting and reproducing in atypical intraspecific hosts (i.e., workers and queens) actually predisposes for and may govern the impact of host shifts on novel hosts should be determined by identifying the underlying mechanisms. In general, the apparent gaps in our knowledge of this coevolved system need to be further addressed to foster the adequate protection of wild and managed honey bees from these mites globally.  相似文献   

2.
Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.  相似文献   

3.
Virulence, the negative impact of parasites on their hosts, typically increases with parasite dose. Parasites and hosts often compete for host resources and more parasites will consume more resources. Depending on the mechanism of competition, increasing host resources can benefit the host. Additional resources can also be harmful when the parasites are the main beneficiaries. Then, the parasites will thrive and virulence increases. While parasite dose is often easy to manipulate, it is less trivial to experimentally scale host resources. Here, we study a system with external host resources that can be easily manipulated: Nicrophorus burying beetles reproduce on vertebrate carcasses, with larger carcasses yielding more beetle offspring. Phoretic Poecilochirus mites reproduce alongside the beetles and reduce beetle fitness. The negative effect of mites could be due to competition for the carrion between beetle and mite offspring. We manipulated mite dose and carcass size to better understand the competition between the symbionts. We found that mite dose itself was not a strong predictor of virulence. Instead, the number of mite offspring determined beetle fitness. At larger doses, there was strong competition among adult parental mites as well as mite offspring. While increasing the carcass size increased both host and parasite fitness, it did surprisingly little to alleviate the negative effect that mites had on beetles. Instead, relative virulence was stronger on large carcasses, indicating that the parasites appropriate more of the additional resources. Our results demonstrate an ecological influence on the selection of parasites on their hosts and suggest that virulence can be dose-independent in principle.  相似文献   

4.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   

5.
The ectoparasitic mite, Varroa destructor, shifted host from the eastern honeybee, Apis cerana, to the western honeybee, Apis mellifera. Whereas the original host survives infestations by this parasite, they are lethal to colonies of its new host. Here, we investigated a population of A. cerana naturally infested by the V. destructor Korea haplotype that gave rise to the globally invasive mite lineage. Our aim was to better characterize traits that allow for the survival of the original host to infestations by this particular mite haplotype. A known major trait of resistance is the lack of mite reproduction on worker brood in A. cerana. We show that this trait is neither due to a lack of host attractiveness nor of reproduction initiation by the parasite. However, successful mite reproduction was prevented by abnormal host development. Adult A. cerana workers recognized this state and removed hosts and parasites, which greatly affected the fitness of the parasite. These results confirm and complete previous observations of brood susceptibility to infestation in other honeybee host populations, provide new insights into the coevolution between hosts and parasites in this system, and may contribute to mitigating the large‐scale colony losses of A. mellifera due to V. destructor.  相似文献   

6.
Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide.  相似文献   

7.
Biologists commonly assume that parasites are locally adapted since they have shorter generation times and higher fecundity than their hosts, and therefore evolve faster in the arms race against the host's defences. As a result, parasites should be better able to infect hosts within their local population than hosts from other allopatric populations. However, recent mathematical modelling has demonstrated that when hosts have higher migration rates than parasites, hosts may diversify their genes faster than parasites and thus parasites may become locally maladapted. This new model was tested on the Canarian endemic lizard and its blood parasite (haemogregarine genus). In this host–parasite system, hosts migrate more than parasites since lizard offspring typically disperse from their natal site soon after hatching and without any contact with their parents who are potential carriers of the intermediate vector of the blood parasite (a mite). Results of cross-infection among three lizard populations showed that parasites were better at infecting individuals from allopatric populations than individuals from their sympatric population. This suggests that, in this host–parasite system, the parasites are locally maladapted to their host.  相似文献   

8.
Parasite–host interactions can drive periodic population dynamics when parasites overexploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite–host interactions, which may govern whether parasites sufficiently overexploit hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate‐killer parasite system with seasonal host activity to investigate the consequences of host phenology on host–parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling as they adapt, but only in some phenological scenarios such as environments with short seasons and synchronous host emergence. Furthermore, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to overexploit hosts and produce population cycles. Host‐parasite cycles also generate an eco‐evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes can be driven extinct due to a population bottleneck depending on when they are introduced in the cycle. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provide further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.  相似文献   

9.
Movements and spatial distribution of host populations are expected to shape the genetic structure of their parasite populations. Comparing the genetic patterns of both interacting species may improve our understanding of their evolutionary history. Moreover, genetic analyses of parasites with horizontal transmission may serve as indicators of historical events or current demographic processes that are not apparent in the genetic signature of their hosts. Here, we compared mitochondrial variation in populations of the ectoparasitic mite Spinturnix myoti with the genetic pattern of its host, the Maghrebian bat Myotis punicus in North Africa and in the islands of Corsica and Sardinia. Mite mitochondrial differentiation among populations was correlated with both host mitochondrial and nuclear differentiation, suggesting spatial co‐differentiation of the lineages of the two interacting species. Therefore our results suggest that parasite dispersal is exclusively mediated by host movements, with open water between landmasses as a main barrier for host and parasite dispersal. Surprisingly the unique presence of a continental European mite lineage in Corsica was inconsistent with host phylogeographical history and strongly suggests the former presence of European mouse‐eared bats on this island. Parasites may thus act as biological tags to reveal the presence of their now locally extinct host.  相似文献   

10.
The size, structure and distribution of host populations are key determinants of the genetic composition of parasite populations. Despite the evolutionary and epidemiological merits, there has been little consideration of how host heterogeneities affect the evolutionary trajectories of parasite populations. We assessed the genetic composition of natural populations of the parasite Schistosoma mansoni in northern Senegal. A total of 1346 parasites were collected from 14 snail and 57 human hosts within three villages and individually genotyped using nine microsatellite markers. Human host demographic parameters (age, gender and village of residence) and co-infection with Schistosoma haematobium were documented, and S. mansoni infection intensities were quantified. F-statistics and clustering analyses revealed a random distribution (panmixia) of parasite genetic variation among villages and hosts, confirming the concept of human hosts as ‘genetic mixing bowls'' for schistosomes. Host gender and village of residence did not show any association with parasite genetics. Host age, however, was significantly correlated with parasite inbreeding and heterozygosity, with children being more infected by related parasites than adults. The patterns may be explained by (1) genotype-dependent ‘concomitant immunity'' that leads to selective recruitment of genetically unrelated worms with host age, and/or (2) the ‘genetic mixing bowl'' hypothesis, where older hosts have been exposed to a wider variety of parasite strains than children. The present study suggests that host-specific factors may shape the genetic composition of schistosome populations, revealing important insights into host–parasite interactions within a natural system.  相似文献   

11.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

12.
Recent climate change has affected the phenology of numerous species, and such differential changes may affect host–parasite interactions. Using information on vectors (louseflies, mosquitoes, blackflies) and parasites (tropical fowl mite Ornithonyssus bursa, the lousefly Ornithomyia avicularia, a chewing louse Brueelia sp., two species of feather mites Trouessartia crucifera and Trouessartia appendiculata, and two species of blood parasites Leucozytozoon whitworthi and Haemoproteus prognei) of the barn swallow Hirundo rustica collected during 1971–2008, I analyzed temporal changes in emergence and abundance, relationships with climatic conditions, and changes in the fitness impact of parasites on their hosts. Temperature and rainfall during the summer breeding season of the host increased during the study. The intensity of infestation by mites decreased, but increased for the lousefly during 1982–2008. The prevalence of two species of blood parasites increased during 1988–2008. The timing of first mass emergence of mosquitoes and blackflies advanced. These temporal changes in phenology and abundance of parasites and vectors could be linked to changes in temperature, but less so to changes in precipitation. Parasites had fitness consequences for hosts because intensity of the mite and the chewing louse was significantly associated with delayed breeding of the host, while a greater abundance of feather mites was associated with earlier breeding. Reproductive success of the host decreased with increasing abundance of the chewing louse. The temporal decrease in mite abundance was associated with advanced breeding of the host, while the increase in abundance of the lousefly was associated with earlier breeding. Virulence by the tropical fowl mite decreased with increasing temperature, independent of confounding factors. These findings suggest that climate change affects parasite species differently, hence altering the composition of the parasite community, and that climate change causes changes in the virulence of parasites. Because the changing phenology of different species of parasites had both positive and negative effects on their hosts, and because the abundance of some parasites increased, while that of other decreased, there was no consistent temporal change in host fitness during 1971–2008.  相似文献   

13.
Antagonistic coevolution between hosts and parasites is believed to play a pivotal role in host and parasite population dynamics, the evolutionary maintenance of sex and the evolution of parasite virulence. Furthermore, antagonistic coevolution is believed to be responsible for rapid differentiation of both hosts and parasites between geographically structured populations. Yet empirical evidence for host-parasite antagonistic coevolution, and its impact on between-population genetic divergence, is limited. Here we demonstrate a long-term arms race between the infectivity of a viral parasite (bacteriophage; phage) and the resistance of its bacterial host. Coevolution was largely driven by directional selection, with hosts becoming resistant to a wider range of parasite genotypes and parasites infective to a wider range of host genotypes. Coevolution followed divergent trajectories between replicate communities despite establishment with isogenic bacteria and phage, and resulted in bacteria adapted to their own, compared with other, phage populations.  相似文献   

14.
Genetic variation among hosts for resistance to parasites is an important assumption underlying evolutionary theory of host and parasite evolution. Using the castrating bacterial parasite Pasteuria ramosa and its cladoceran host Daphnia magna, we examined both within- and between-population genetic variation for resistance. First, we tested hosts from four populations for genetic variation for resistance to three parasite isolates. Allozyme analysis revealed significant host population divergence and that genetic distance corresponds to geographic distance. Host and parasite fitness components showed strong genetic differences between parasite isolates for host population by parasite interactions and for clones within populations, whereas host population effects were significant for only a few traits. In a second experiment we tested explicitly for within-population differences in variation for resistance by challenging nine host clones from a single population with four different parasite spore doses. Strong clone and dose effects were evident. More susceptible clones also suffered higher costs once infected. The results indicate that within-population variation for resistance is high relative to between-population variation. We speculate that P. ramosa adapts to individual host clones rather than to its host population.  相似文献   

15.
The link between long-term host–parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host–parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host–parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host''s resistance loci on an intercontinental scale and provide an example of a direct link between the host’s resistance to a virulent pathogen and the large-scale diversity of its underlying genes.  相似文献   

16.
In its native Europe, the bumblebee, Bombus terrestris (L.) has co-evolved with a large array of parasites whose numbers are negatively linked to the genetic diversity of the colony. In Tasmania B. terrestris was first detected in 1992 and has since spread over much of the state. In order to understand the bee’s invasive success and as part of a wider study into the genetic diversity of bumblebees across Tasmania, we screened bees for co-invasions of ectoparasitic and endoparasitic mites, nematodes and micro-organisms, and searched their nests for brood parasites. The only bee parasite detected was the relatively benign acarid mite Kuzinia laevis (Dujardin) whose numbers per bee did not vary according to region. Nests supported no brood parasites, but did contain the pollen-feeding life stages of K. laevis. Upon summer-autumn collected drones and queens, mites were present on over 80% of bees, averaged ca. 350–400 per bee and were more abundant on younger bees. Nest searching spring queens had similar mite numbers to those collected in summer-autumn but mite numbers dropped significantly once spring queens began foraging for pollen. The average number of mites per queen bee was over 30 fold greater than that reported in Europe. Mite incidence and mite numbers were significantly lower on worker bees than drones or queens, being present on just 51% of bees and averaging 38 mites per bee. Our reported incidence of worker bee parasitism by this mite is 5–50 times higher than reported in Europe. That only one parasite species co-invaded Tasmania supports the notion that a small number of queens founded the Tasmanian population. However, it is clearly evident that both the bee in the absence of parasites, and the mite have been extraordinarily successful invaders. Received 12 April 2006; revised 10 November 2006; accepted 15 November 2006.  相似文献   

17.
The parasite (Red Queen) hypothesis for the maintenance of sexual reproduction and genetic diversity assumes that host-parasite interactions result from tight genetic specificity. Hence, hybridization between divergent parasite populations would be expected to disrupt adaptive gene combinations, leading to reduced infectivity on exposure to parental sympatric hosts, as long as gene effects are nonadditive. In contrast, hybridization would not cause reduced infectivity on allopatric hosts unless the divergent parasite populations possess alleles that are intrinsically incompatible when they are combined. In three different experiments, we compared the infectivity of locally adapted parasite (trematode) populations with that of F(1) hybrid parasites when exposed to host (snail) populations that were sympatric to one of the two parasite populations. We tested for intrinsic genetic incompatibilities in two experiments by including one host population that was allopatric to both parasite populations. As predicted, when the target host populations were sympatric to the parasite populations, the hybrids were significantly less infective than the parental average, while hybrid parasites on allopatric hosts were not, thereby ruling out intrinsic genetic incompatibilities. The results are consistent with nonadditive gene effects and tightly specific host-driven selection underlying parasite divergence, as envisioned by coevolutionary theory and the Red Queen hypothesis.  相似文献   

18.
What selective processes underlie the evolution of parasites and their hosts? Arms-race models propose that new host-resistance mutations or parasite counter-adaptations arise and sweep to fixation. Frequency-dependent models propose that selection favours pathogens adapted to the most common host genotypes, conferring an advantage to rare host genotypes. Distinguishing between these models is empirically difficult. The maintenance of disease-resistance polymorphisms has been studied in detail in plants, but less so in animals, and rarely in natural populations. We have made a detailed study of genetic variation in host resistance in a natural animal population, Drosophila melanogaster, and its natural pathogen, the sigma virus. We confirm previous findings that a single (albeit complex) mutation in the gene ref(2)P confers resistance against sigma and show that this mutation has increased in frequency under positive selection. Previous studies suggested that ref(2)P polymorphism reflects the progress of a very recent selective sweep, and that in Europe during the 1980s, this was followed by a sweep of a sigma virus strain able to infect flies carrying this mutation. We find that the ref(2)P resistance mutation is considerably older than the recent spread of this viral strain and suggest that—possibly because it is recessive—the initial spread of the resistance mutation was very slow.  相似文献   

19.
The genetic diversity of Varroa destructor (Anderson &Trueman)is limited outside its natural range due to population bottlenecks and its propensity to inbreed.In light of the arms race between V.destructor and its honeybee (Apis mellifera L.)host, any mechanism enhancing population admixture of the mite may be favored.One way that admixture can occur is when two genetically dissimilar mites coinvade a brood cell, with the progeny of the foundresses admixing.We determined the relatedness of 393 pairs of V.destructor foundresses,each pair collected from a single bee brood cell (n =five colonies).We used six microsatellites to identify the genotypes of mites coinvading a cell and calculated the frequency of pairs with different or the same genotypes.We found no deviation from random coinvasion,but the frequency of cells infested by mites with different genotypes was high.This rate of recombination,coupled with a high transmission rate of mites,homogenized the allelic pool of mites within the apiary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号