首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Invasive Alien Species (IAS) alter ecosystems, disrupting ecological processes and driving the loss of ecosystem services. The common carp Cyprinus carpio is a hazardous and widespread IAS, becoming the most abundant species in many aquatic ecosystems. This species transforms ecosystems by accumulating biomass to the detriment of other species, thus altering food webs. However, some terrestrial species, such as vertebrate scavengers, may benefit from dead carps, by incorporating part of the carp biomass into the terrestrial environment. This study describes the terrestrial vertebrate scavenger assemblage that benefits from carp carcasses in a Mediterranean wetland. We also evaluate the seasonal differences in the scavenger assemblage composition and carrion consumption patterns. Eighty carp carcasses (20 per season) were placed in El Hondo Natural Park, a seminatural mesohaline wetland in south‐eastern Spain, and we monitored their consumption using camera traps. We recorded 14 scavenger species (10 birds and four mammals) consuming carp carcasses, including globally threatened species. Vertebrates consumed 73% of the carrion biomass and appeared consuming at 82% of the carcasses. Of these carcasses consumed, 75% were completely consumed and the mean consumption time of carcasses completely consumed by vertebrates was 44.4 h (SD = 42.1 h). We recorded differences in species richness, abundance, and assemblage composition among seasons, but we did not find seasonal differences in consumption patterns throughout the year. Our study recorded a rich and efficient terrestrial vertebrate scavenger assemblage benefitting from carp carcasses. We detected a seasonal replacement on the scavenger species, but a maintenance of the ecological function of carrion removal, as the most efficient carrion consumers were present throughout the year. The results highlight the importance of vertebrate scavengers in wetlands, removing possible infectious focus, and moving nutrients between aquatic and terrestrial environments.  相似文献   

3.
1. Empirical and theoretical research over the past decade has demonstrated the widespread importance of aquatic subsidies to terrestrial food webs. In particular, adult aquatic insects that emerge from streams and lakes are prey for terrestrial predators. While variation in the magnitude of this subsidy is clearly important, the potential top‐down effects of the predatory adults of some aquatic insects in terrestrial food webs are largely unknown. 2. I used published data on benthic insect density (as a proxy for emergence) in North and South America to explore how the proportion of benthic insects that are predatory as adults varies across a gradient of mean annual stream temperature. 3. The proportion of benthic insects that are predatory as adults varied widely across sites (0–12% by abundance; 0–86% by biomass). There was a positive relationship between mean annual stream temperature and the proportion of predatory adults across all sites, driven largely by the greater abundance/biomass of predatory taxa (e.g. odonates), relative to non‐predators (e.g. midges, mayflies, caddisflies), in tropical than in temperate streams. 4. The ‘trophic structure’ (i.e. the proportion of predators) of emerging adult aquatic insects is an understudied source of variation in aquatic–terrestrial interactions. Incorporation of trophic structure in future studies is needed to understand how future modification of fresh waters may affect adjacent terrestrial food webs through both bottom‐up and top‐down effects.  相似文献   

4.
Birds experience a sequence of critical events during their life cycle, and past events can subsequently determine future performance via carry‐over effects. Events during the non‐breeding season may influence breeding season phenology or productivity. Less is understood about how events during the breeding season affect individuals subsequently in their life cycle. Using stable carbon isotopes, we examined carry‐over effects throughout the annual cycle of prairie warblers (Setophaga discolor), a declining Nearctic–Neotropical migratory passerine bird. In drier winters, juvenile males that hatched earlier at our study site in Massachusetts, USA, occupied wetter, better‐quality winter habitat in the Caribbean, as indicated by depleted carbon isotope signatures. For juveniles that were sampled again as adults, repeatability in isotope signatures indicated similar winter habitat occupancy across years. Thus, hatching date of juvenile males appears to influence lifetime winter habitat occupancy. For adult males, reproductive success did not carry over to influence winter habitat occupancy. We did not find temporally consecutive “domino” effects across the annual cycle (breeding to wintering to breeding) or interseasonal, intergenerational effects. Our finding that a male''s hatching date can have a lasting effect on winter habitat occupancy represents an important contribution to our understanding of seasonal interactions in migratory birds.  相似文献   

5.
1. Leaf litter breakdown and associated invertebrates were compared among three logged and three reference stream reaches 2–3 years before and 3–4 years after logging to assess the environmental impacts of partial‐harvest logging as a novel riparian management strategy for boreal forest streams. 2. Partial‐harvest logging at three sites resulted in 10, 21 and 28% average basal area removal from riparian buffers adjacent to upland clear‐cut areas. 3. Leaf litter breakdown rates were not significantly different between reference and logged sites after logging, but litter breakdown was significantly different from year to year at all sites. 4. Significant post‐logging differences in aquatic invertebrate communities were detected at only one of the three logged sites. These differences were largely the result of increases in some leaf‐shredding stoneflies and a detritivorous mayfly and a decrease in a chironomid group 2–4 years after logging. This site where significant change was detected had the lowest intensity of riparian logging (average 10% removal) but the highest proportion of the catchment area that was clear cut (85%). 5.The post‐logging differences in invertebrate communities at this site were more related to catchment‐wide influences (e.g. weather patterns, water yield, possibly upland clearcutting) than to reach‐level disturbances from riparian logging. 6.The study indicates that partial‐harvest logging in riparian buffers at up to 50% removal should pose little risk of harm to leaf litter breakdown processes or aquatic invertebrate communities beyond any impacts that might arise from upland logging disturbance or catchment‐wide influences. However, the results should be viewed in the context of the natural disturbance (summer drought conditions) through the post‐logging assessment period of this study. Post‐logging summer drought conditions may have masked or confounded logging impacts on streams.  相似文献   

6.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

7.
1. Trophic fractionation was studied in short‐term laboratory feeding experiments with larvae of the deposit‐feeding midge Chironomus riparius. Larvae were fed food of terrestrial (oats, peat) and aquatic origin (Spirulina, Tetraphyll®). 2. By analysing both whole larvae and isolated gut contents we were able to distinguish between the isotopic signature of recently ingested food and that of assimilated carbon and nitrogen in body tissue. Additionally we studied the effects of microbial conditioning, i.e. the colonisation and growth on food particles of microbes, on the isotopic signal of food resources. 3. Nitrogen fractionation for the different food types ranged from 0.67‰ to 2.68‰ between consumer and diet and showed that isotopic fractionation can be much lower than the value of 3.4‰ that is commonly assumed. 4. Microbial degradation of food particles resulted in an approximate doubling of the δ15N in 8 days, from 6.24 ± 0.05‰ to 11.36 ± 0.56‰. Values for δ13C increased only marginally, from ?20.66 ± 0.11‰ to ?20.34 ± 0.12‰. These results show that microbial conditioning of food may affect dietary isotope signatures (in particular N) and, unless accounted for, could introduce an error in measures of trophic fractionation. Microbial conditioning could well account for some of the variation in fractionation reported in the literature.  相似文献   

8.
  1. The availability and investment of energy among successive life‐history stages is a key feature of carryover effects. In migratory organisms, examining how both winter and spring experiences carryover to affect breeding activity is difficult due to the challenges in tracking individuals through these periods without impacting their behavior, thereby biasing results.
  2. Using common eiders Somateria mollissima, we examined whether spring conditions at an Arctic breeding colony (East Bay Island, Nunavut, Canada) can buffer the impacts of winter temperatures on body mass and breeding decisions in birds that winter at different locations (Nuuk and Disko Bay, Greenland, and Newfoundland, Canada; assessed by analyzing stable isotopes of 13‐carbon in winter‐grown claw samples). Specifically, we used path analysis to examine how wintering and spring environmental conditions interact to affect breeding propensity (a key reproductive decision influencing lifetime fitness in female eiders) within the contexts of the timing of colony arrival, pre‐breeding body mass (body condition), and a physiological proxy for foraging effort (baseline corticosterone).
  3. We demonstrate that warmer winter temperatures predicted lower body mass at arrival to the nesting colony, whereas warmer spring temperatures predicted earlier arrival dates and higher arrival body mass. Both higher body mass and earlier arrival dates of eider hens increased the probability that birds would initiate laying (i.e., higher breeding propensity). However, variation in baseline corticosterone was not linked to either winter or spring temperatures, and it had no additional downstream effects on breeding propensity.
  4. Overall, we demonstrate that favorable pre‐breeding conditions in Arctic‐breeding common eiders can compensate for the impact that unfavorable wintering conditions can have on breeding investment, perhaps due to greater access to foraging areas prior to laying.
  相似文献   

9.
Spawning Pacific salmon (Oncorhynchus spp.) contribute marine-derived nutrients to riparian ecosystems, potentially affecting characteristics of the associated soils and vegetation. We quantified these effects by comparing soil and vegetative characteristics upstream and downstream of natural migratory barriers on ten spawning streams in southwest Alaska. Mean δ15N values—indicative of salmon-borne nutrients—were significantly higher in the O horizon and surface mineral soils downstream of barriers (near spawning reaches) than in soils upstream of barriers (near non-spawning reaches). However, the mean total N concentration in surface mineral soil was lower downstream than upstream. Mean foliar δ15N values were higher downstream for three plant species (Picea glauca, Salix alaxensis and Arctagrostis latifolia) with contrasting physiognomies. Mean overstory stem density was 100% higher downstream, primarily due to a fivefold difference in the density of large-diameter willows (Salix spp.). Mean understory stem density was 47% lower downstream, also driven by a difference in willow density. Mean ground layer non-vascular and dwarf shrub species covers were 28% and 73% lower downstream, respectively. Of the ten soil and vegetative characteristics that differed upstream to downstream, two (O horizon and Picea glauca δ15N) were correlated with the density of spawning salmon. Collectively, the data suggest that salmon-borne nutrients alter riparian soils and vegetation, while factors unrelated to salmon are responsible for the ultimate expression of many community characteristics.  相似文献   

10.
  1. Dietary studies in birds of prey involve direct observation and examination of food remains at resting and nesting sites. Although these methods accurately identify diet in raptors, they are time‐consuming, resource‐intensive, and associated with biases from the feeding ecology of raptors like Gyps vultures. Our study set out to estimate diet composition in Gyps vultures informed by stable isotopes that provide a good representation of assimilated diet from local systems.
  2. We hypothesized that differences in Gyps vulture diet composition is a function of sampling location and that these vultures move between Serengeti National Park and Selous Game Reserve to forage. We also theorized that grazing ungulates are the principal items in Gyps vulture diet.
  3. Through combined linear and Bayesian modeling, diet derived from δ13C in Gyps vultures consisted of grazing herbivores across sites, with those in Serengeti National Park consuming higher proportions of grazing herbivores (>87%). δ13C differences in vulture feather subsets did not indicate shifts in vulture diet and combined with blood δ13C, vultures fed largely on grazers for ~159 days before they were sampled. Similarly, δ15N values indicated Gyps vultures fed largely on herbivores. δ34S ratios separated where vultures fed when the two sites were compared. δ34S variation in vultures across sites resulted from baseline differences in plant δ34S values, though it is not possible to match δ34S to specific locations.
  4. Our findings highlight the relevance of repeated sampling that considers tissues with varying isotopic turnover and emerging Bayesian techniques for dietary studies using stable isotopes. Findings also suggested limited vulture movement between the two local systems. However, more sampling coupled with environmental data is required to fully comprehend this observation and its implications to Gyps vulture ecology and conservation.
  相似文献   

11.
This discovery study investigated in healthy subjects whether a short‐term cold exposure may alter circulating microRNAs and metabolic parameters and if co‐expression networks between these factors could be identified. This open randomized crossover (cold vs no cold exposure) study with blind end‐ point evaluation was conducted at 1 center with 10 healthy adult male volunteers. Wearing a cooling vest perfused at 14°C for 2 h reduced the local skin temperature without triggering shivering, increased norepinephrine and blood pressure while decreasing copeptin, C‐peptide and heart rate. Circulating microRNAs measured before and after wearing the cooling vest twice (4 time points) identified 196 mature microRNAs with excellent reproducibility over 72 h. Significant correlations of microRNA expression with copeptin, norepinephrine and C‐peptide were found. A co‐expression‐based microRNA‐microRNA network, as well as microRNA pairs displaying differential correlation as a function of temperature were also detected. This study demonstrates that circulating miRNAs are differentially expressed and coregulated upon cold exposure in humans, supporting their use as predictive and dynamic biomarkers of cardio‐metabolic disorders.  相似文献   

12.
Mercury (Hg) is increasing in marine food webs, especially at high latitudes. The bioaccumulation and biomagnification of methyl mercury (MeHg) has serious effects on wildlife, and is most evident in apex predators. The MeHg body burden in birds is the balance of ingestion and excretion, and MeHg in feathers is an effective indicator of overall MeHg burden. Ivory gulls (Pagophila eburnea), which consume ice-associated prey and scavenge marine mammal carcasses, have the highest egg Hg concentrations of any Arctic bird, and the species has declined by more than 80% since the 1980s in Canada. We used feathers from museum specimens from the Canadian Arctic and western Greenland to assess whether exposure to MeHg by ivory gulls increased from 1877 to 2007. Based on constant feather stable-isotope (δ13C, δ15N) values, there was no significant change in ivory gulls'' diet over this period, but feather MeHg concentrations increased 45× (from 0.09 to 4.11 µg g−1 in adults). This dramatic change in the absence of a dietary shift is clear evidence of the impact of anthropogenic Hg on this high-latitude threatened species. Bioavailable Hg is expected to increase in the Arctic, raising concern for continued population declines in high-latitude species that are far from sources of environmental contaminants.  相似文献   

13.
Ecosystem engineers that modify the soil and ground‐layer properties exert a strong influence on vegetation communities in ecosystems worldwide. Understanding the interactions between animal engineers and vegetation is challenging when in the presence of large herbivores, as many vegetation communities are simultaneously affected by both engineering and herbivory. The superb lyrebird Menura novaehollandiae, an ecosystem engineer in wet forests of south‐eastern Australia, extensively modifies litter and soil on the forest floor. The aim of this study was to disentangle the impacts of engineering by lyrebirds and herbivory by large mammals on the composition and structure of ground‐layer vegetation. We carried out a 2‐year, manipulative exclusion experiment in the Central Highlands of Victoria, Australia. We compared three treatments: fenced plots with simulated lyrebird foraging; fenced plots excluding herbivores and lyrebirds; and open controls. This design allowed assessment of the relative impacts of engineering and herbivory on germination rates, seedling density, vegetation cover and structure, and community composition. Engineering by lyrebirds enhanced the germination of seeds in the litter layer. After 2 years, more than double the number of germinants were present in “engineered” than “non‐engineered” plots. Engineering did not affect the density of seedlings, but herbivory had strong detrimental effects. Herbivory also reduced the floristic richness and structural complexity (<0.5 m) of forest vegetation, including the cover of herbs. Neither process altered the floristic composition of the vegetation within the 2‐year study period. Ecosystem engineering by lyrebirds and herbivory by large mammals both influence the structure of forest‐floor vegetation. The twofold increase in seeds stimulated to germinate by engineering may contribute to the evolutionary adaptation of plants by allowing greater phenotypic expression and selection than would otherwise occur. Over long timescales, engineering and herbivory likely combine to maintain a more‐open forest floor conducive to ongoing ecosystem engineering by lyrebirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号