首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The genetic diversity and phylogeography of maternal lineages in Ursus arctos Linnaeus, 1758 (the brown bear) have been studied extensively over the last two decades; however, sampling has largely been limited to the northern Holarctic, and was possibly biased towards lineages that recolonized the vast expanses of the north as the Last Glacial Maximum (LGM) ended. Here we report the genetic diversity and phylogeography of U. arctos from Turkey based on 35 non‐invasive samples, including five from captive individuals. Bayesian phylogenetic analyses based on a 269‐bp fragment of the mitochondrial DNA control region revealed 14 novel haplotypes belonging to three major lineages. The most widespread lineage was found to be the Eastern clade 3a, whereas geographically more restricted Western and Middle Eastern lineages were reported for the first time in Turkey. A specimen from the Taurus mountain range carried a haplotype closely related to the presumably extinct bears in Lebanon. Moreover, we identify a unique new lineage that appears to have split early within the Middle Eastern clade. Despite limited sampling, our study reveals a high level of mitochondrial diversity in Turkish U. arctos, shows that the ranges of both European and Middle Eastern clades extend into Turkey, and identifies a new divergent lineage of possibly wider historical occurrence. Obtaining these results with 35 samples also demonstrates the value of proper sampling from regions that have not been significantly affected by the LGM. © 2015 The Linnean Society of London  相似文献   

3.
Annual home-range size indices for 36 male and 52 female adult brown bears Ursus arctos in two study areas in central and northern Scandinavia were estimated to evaluate factors believed to influence home-range size. Male home ranges were larger than home ranges of lone females after controlling for the sexual size dimorphism acting on metabolic needs. Further, home ranges of females with cubs were smaller than home ranges of lone females and females with yearlings. Thus, differences in metabolic need were not able to explain the variation in range size among females of different reproductive categories or between males and females, suggesting roaming behaviour of males in this promiscuous species. Home-range size in both males and females was inversely related to population density along a density gradient that was not linked to food availability. This contradicts the hypothesis that females use the minimum areas that sustain their energy requirements. However, on a large geographical scale a negative relationship between range size and food availability was evident. The annual home ranges in inland boreal environments in Scandinavia are the largest reported for brown bears in Eurasia, and similar to those in inland boreal and montane environments in North America.  相似文献   

4.
In most of Europe, true wilderness areas do not exist and brown bears Ursus arctos generally have to cope with human disturbance and infrastructure. The few studies in Europe that have investigated brown bear activity have demonstrated a predominantly nocturnal and 'shy' behaviour in bears. There is still quite a debate on whether the shy, nocturnal bears of Europe are the result of centuries of persecution by men (genetically fixed trait) or whether hunting and the high disturbance potential in the multi-use landscapes are the driving force (individually learnt trait). We analysed the activity pattern of 16 individual bears monitored for 3372 h between May and October 1982–1998 in the Dinaric Mountains of Slovenia and Croatia. The data were collected via time sampling and basically analysed using two approaches: a general linear model with seasonal component to delineate the most important variables influencing the activity pattern and level and cluster analysis to group bears according to their 24-h activity pattern. Time of day and age were the most important variables predicting activity. Although individual variation in the activity pattern was high among individual bears, in general, yearlings were more diurnal and had a less distinct difference between day- and night-time activity levels than adult bears. Subadults were somewhat intermediate to adults and yearlings. We believe that nocturnal behaviour is most likely driven through negative experiences with humans, giving space for much individual variation. More research is needed to prove the causal relationship of nocturnal behaviour and the degree of disturbance that an individual bear is exposed to.  相似文献   

5.
Miller CR  Waits LP  Joyce P 《Molecular ecology》2006,15(14):4477-4485
The fossil record indicates that the brown bear (Ursus arctos) colonized North America from Asia over 50 000 years ago. The species historically occupied the western United States and northern Mexico but has been extirpated from over 99% of this range in the last two centuries. To evaluate colonization hypotheses, subspecific classifications, and historical patterns and levels of genetic diversity in this region, we sequenced 229 nucleotides of the mitochondrial DNA control region in 108 museum specimens. The work was set in a global context by synthesizing all previous brown bear control region sequences from around the world. In mid-latitude North America a single moderately diverse clade is observed, represented by 23 haplotypes with up to 3.5% divergence. Only eight of 23 haplotypes (35%) are observed in the extensively sampled extant populations suggesting a substantial loss of genetic variability. The restriction of all haplotypes from mid-latitude North America to a single clade suggests that this region was founded by bears with a similar maternal ancestry. However, the levels and distributions of diversity also suggest that the colonizing population was not a small founder event, and that expansion occurred long enough ago for local mutations to accrue. Our data are consistent with recent genetic evidence that brown bears were south of the ice prior to the last glacial maximum. There is no support for previous subspecies designations, although bears of the southwestern United States may have had a distinctive, but recent, pattern of ancestry.  相似文献   

6.
7.
To evaluate the influence of diet on faecal DNA amplification, 11 captive brown bears (Ursus arctos) were placed on six restricted diets: grass (Trifolium spp., Haplopappus hirtus and Poa pratensis), alfalfa (Lupinus spp.), carrots (Daucus spp.), white-tailed deer (Odocoileus virginianus), blueberries (Vaccinium spp.) and salmon (Salmo spp.). DNA was extracted from 50 faecal samples of each restricted diet, and amplification of brown bear DNA was attempted for a mitochondrial DNA (mtDNA) locus and nuclear DNA (nDNA) locus. For mtDNA, no significant differences were observed in amplification success rates across diets. For nDNA, amplification success rates for salmon diet extracts were significantly lower than all other diet extracts (P < 0.001). To evaluate the accuracy of faecal DNA sex identification when female carnivores consume male mammalian prey, female bears were fed male white-tailed deer. Four of 10 extracts amplified, and all extracts were incorrectly scored as male due to amplification of X and Y-chromosome fragments. The potential biases highlighted in this study have broad implications for researchers using faecal DNA for individual and sex identification, and should be evaluated in other species.  相似文献   

8.
The taxonomic status of brown bears in the Caucasus remains unclear. Several morphs or subspecies have been identified from the morphological (craniological) data, but the status of each of these subspecies has never been verified by molecular genetic methods. We analysed mitochondrial DNA sequences (control region) to reveal phylogenetic relationships and infer divergence time between brown bear subpopulations in the Caucasus. We estimated migration and gene flow from both mitochondrial DNA and microsatellite allele frequencies, and identified possible barriers to gene flow among the subpopulations. Our suggestion is that all Caucasian bears belong to the nominal subspecies of Ursus arctos. Our results revealed two genetically and geographically distinct maternal haplogroups: one from the Lesser Caucasus and the other one from the Greater Caucasus. The genetic divergence between these haplogroups dates as far back as the beginning of human colonization of the Caucasus. Our analysis of the least‐cost distances between the subpopulations suggests humans as a major barrier to gene flow. The low genetic differentiation inferred from microsatellite allele frequencies indicates that gene flow between the two populations in the Caucasus is maintained through the movements of male brown bears. The Likhi Ridge that connects the Greater and Lesser Caucasus mountains is the most likely corridor for this migration.  相似文献   

9.
The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains. We genotyped 510 bears using 20 microsatellite loci and determined their age. The samples were organized into cohorts with regard to the year when the animals were born and yearly samples with age categories for every year when they were alive. We used the Estimator by Parentage Assignment (EPA) to directly estimate both N(e) and generation interval for each yearly sample. For cohorts, we estimated the effective number of breeders (N(b) ) using linkage disequilibrium, sibship assignment and approximate Bayesian computation methods and extrapolated these estimates to N(e) using the generation interval. The N(e) estimate by EPA is 276 (183-350 95% CI), meeting the inbreeding-avoidance criterion of N(e) > 50 but short of the long-term minimum viable population goal of N(e) > 500. The results obtained by the other methods are highly consistent with this result, and all indicate a rapid increase in N(e) probably in the late 1990s and early 2000s. The new single-sample approaches to the estimation of N(e) provide efficient means for including N(e) in monitoring frameworks and will be of great importance for future management and conservation.  相似文献   

10.
To further elucidate the pattern of MHC isoform expression in skeletal muscles of large mammals, in this study the skeletal muscles of brown bear, one of the largest mammalian predators with an extraordinary locomotor capacity, were analyzed. Fiber types in longissimus dorsi, triceps brachii caput longum, and rectus femoris muscles were determined according to the myofibrillar ATPase (mATPase) histochemistry and MHC isoform expression, revealed by a set of antibodies specific to MHC isoforms. The oxidative (SDH) and glycolytic enzyme (α‐GPDH) capacity of fibers was demonstrated as well. By mATPase histochemistry five fiber types, i.e., I, IIC, IIA, IIAX, IIX were distinguished. Analyzing the MHC isoform expression, we assume that MHC‐I, ‐IIa, and ‐IIx are expressed in the muscles of adolescent bears. MHC‐I isoform was expressed in Type‐I fibers and coexpressed with presumably ‐IIa isoform, in Type‐IIC fibers. Surprisingly, two antibodies specific to rat MHC‐IIa stained those fast fibers, that were histochemically and immunohistochemically classified as Type IIX. This assumption was additionally confirmed by complete absence of fiber staining with antibody specific to rat MHC‐IIb and all fast fiber staining with antibody that according to our experience recognizes MHC‐IIa and ‐IIx of rat. Furthermore, quite high‐oxidative capacity of all fast fiber types and their weak glycolytic capacity also imply for MHC‐IIa and ‐IIx isoform expression in fast fibers of bear. However, in adult, full‐grown animal, only MHC‐I and MHC‐IIa isoforms were expressed. The expression of only two fast isoforms in bear, like in many other large mammals (humans, cat, dog, goat, cattle, and horse) obviously meets the weight‐bearing and locomotor demands of these mammals. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

12.
In the 1930s, the Scandinavian brown bear was close to extinction due to vigorous extermination programmes in Norway and Sweden. Increased protection of the brown bear in Scandinavia has resulted in the recovery of four subpopulations, which currently contain close to 1000 individuals. Effective conservation and management of the Scandinavian brown bear requires knowledge of the current levels of genetic diversity and gene flow among the four subpopulations. Earlier studies of mitochondrial DNA (mtDNA) diversity revealed extremely low levels of genetic variation, and population structure that grouped the three northern subpopulations in one genetic clade and the southernmost subpopulation in a second highly divergent clade. In this study, we extended the analysis of genetic diversity and gene flow in the Scandinavian brown bear using data from 19 nuclear DNA microsatellite loci. Results from the nuclear loci were strikingly different than the mtDNA results. Genetic diversity levels in the four subpopulations were equivalent to diversity levels in nonbottlenecked populations from North America, and significantly higher than levels in other bottlenecked and isolated brown bear populations. Gene flow levels between subpopulations ranged from low to moderate and were correlated with geographical distance. The substantial difference in results obtained using mtDNA and nuclear DNA markers stresses the importance of collecting data from both types of genetic markers before interpreting data and making recommendations for the conservation and management of natural populations. Based on the results from the mtDNA and nuclear DNA data sets, we propose one evolutionarily significant unit and four management units for the brown bear in Scandinavia.  相似文献   

13.
We estimated the phylogenetic relationships of brown bear maternal haplotypes from countries of northeastern Europe (Estonia, Finland and European Russia), using sequences of mitochondrial DNA (mtDNA) control region of 231 bears. Twenty-five mtDNA haplotypes were identified. The brown bear population in northeastern Europe can be divided into three haplogroups: one with bears from all three countries, one with bears from Finland and Russia, and the third composed almost exclusively of bears from European Russia. Four haplotypes from Finland and European Russia matched exactly with haplotypes from Slovakia, suggesting the significance of the current territory of Slovakia in ancient demographic processes of brown bears. Based on the results of this study and those from the recent literature, we hypothesize that the West Carpathian Mountains have served either as one of the northernmost refuge areas or as an important movement corridor for brown bears of the Eastern lineage towards northern Europe during or after the last ice age. Bayesian analyses were performed to investigate the temporal framework of brown bear lineages in Europe. The molecular clock was calibrated using Beringian brown bear sequences derived from radiocarbon-dated ancient samples, and the estimated mutation rate was 29.8% (13.3%-47.6%) per million years. The whole European population and Western and Eastern lineages formed about 175,000, 70,000 and 25,000 years before present, respectively. Our approach to estimating the time frame of brown bear evolution demonstrates the importance of using an appropriate mutation rate, and this has implications for other studies of Pleistocene populations.  相似文献   

14.
Genetic monitoring has rarely been used for wildlife translocations despite the potential benefits this approach offers, compared to traditional field‐based methods. We applied genetic monitoring to the reintroduced brown bear population in northern Italy. From 2002 to 2008, 2781 hair and faecal samples collected noninvasively plus 12 samples obtained from captured or dead bears were used to follow the demographic and geographical expansion and changes in genetic composition. Individual genotypes were used to reconstruct the wild pedigree and revealed that the population increased rapidly, from nine founders to >27 individuals in 2008 (λ = 1.17–1.19). Spatial mapping of bear samples indicated that most bears were distributed in the region surrounding the translocation site; however, individual bears were found up to 163 km away. Genetic diversity in the population was high, with expected heterozygosity of 0.74–0.79 and allelic richness of 4.55–5.41. However, multi‐year genetic monitoring data showed that mortality rates were elevated, immigration did not occur, one dominant male sired all cubs born from 2002 to 2005, genetic diversity declined, relatedness increased, inbreeding occurred, and the effective population size was extremely small (Ne = 3.03, ecological method). The comprehensive information collected through genetic monitoring is critical for implementing future conservation plans for the brown bear population in the Italian Alps. This study provides a model for other reintroduction programmes by demonstrating how genetic monitoring can be implemented to uncover aspects of the demography, ecology and genetics of small and reintroduced populations that will advance our understanding of the processes influencing their viability, evolution, and successful restoration.  相似文献   

15.
Climate change has direct impacts on wildlife and future biodiversity protection efforts. Vulnerability assessment and habitat connectivity analyses are necessary for drafting effective conservation strategies for threatened species such as the Tibetan brown bear (Ursus arctos pruinosus). We used the maximum entropy (MaxEnt) model to assess the current (1950–2000) and future (2041–2060) habitat suitability by combining bioclimatic and environmental variables, and identified potential climate refugia for Tibetan brown bears in Sanjiangyuan National Park, China. Next, we selected Circuit model to simulate potential migration paths based on current and future climatically suitable habitat. Results indicate a total area of potential suitable habitat under the current climate scenario of approximately 31,649.46 km2, of which 28,778.29 km2 would be unsuitable by the 2050s. Potentially suitable habitat under the future climate scenario was projected to cover an area of 23,738.6 km2. Climate refugia occupied 2,871.17 km2, primarily in the midwestern and northeastern regions of Yangtze River Zone, as well as the northern region of Yellow River Zone. The altitude of climate refugia ranged from 4,307 to 5,524 m, with 52.93% lying at altitudes between 4,300 and 4,600 m. Refugia were mainly distributed on bare rock, alpine steppe, and alpine meadow. Corridors linking areas of potentially suitable brown bear habitat and a substantial portion of paths with low‐resistance value were distributed in climate refugia. We recommend various actions to ameliorate the impact of climate change on brown bears, such as protecting climatically suitable habitat, establishing habitat corridors, restructuring conservation areas, and strengthening monitoring efforts.  相似文献   

16.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

17.
Sequence analyses of the complete brown bear, Ursus arctos, mitochondrial DNA (mtDNA) genome have detected scattered single nucleotide polymorphisms (SNPs) that define distinct mtDNA haplogroups in phylogeographical studies. The degraded DNA in historical samples, such as stuffed or excavated specimens, however, is often not suitable for sequence analyses. To address this problem, we developed an amplified product length polymorphism (APLP) analysis for mtDNA‐haplogrouping U. arctos specimens by detecting haplogroup‐specific SNPs. We verified the validity and utility of this method by analysing up to 170‐year‐old skin samples from U. arctos specimens collected widely across continental Eurasia. We detected some of the same haplogroups as those occurring in eastern Hokkaido (Japan) and eastern Alaska in continental Eurasia (the Altai and the Caucasus). Our results show that U. arctos in eastern Hokkaido and eastern Alaska descended from a common ancestor in continental Eurasia, and suggest that U. arctos occupied several refugia in southern Asia during the Last Glacial Maximum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 627–635.  相似文献   

18.
Taenia tapeworms of Finnish and Swedish wolves (Canis lupus) and Finnish brown bears (Ursus arctos), and muscle cysticerci of Svalbard reindeer (Rangifer tarandus platyrhynchus), Alaskan Grant's caribou (Rangifer tarandus granti) and Alaskan moose (Alces americanus) were identified on the basis of the nucleotide sequence of a 396 bp region of the mitochondrial cytochrome c oxidase subunit 1 gene. Two species were found from wolves: Taenia hydatigena and Taenia krabbei. The cysticerci of reindeer, caribou and one moose also represented T. krabbei. Most of the cysticercal specimens from Alaskan moose, however, belonged to an unknown T. krabbei-like species, which had been reported previously from Eurasian elks (Alces alces) from Finland. Strobilate stages from two bears belonged to this species as well. The present results suggest that this novel Taenia sp. has a Holarctic distribution and uses Alces spp. as intermediate and ursids as final hosts.  相似文献   

19.
Loss of connectivity and habitat destruction may lead to genetic depletion of wild animal populations, especially in species requiring large, connected territories as the brown bear (Ursus arctos). Brown bear populations of North Western Russia, Finland and Northern Norway have been assumed to form one large, continuous population; however this hypothesis has not been tested sufficiently. We have genotyped 1,887 samples from 2005 to 2008 from four distinct areas and used the resulting DNA profiles from 146 different individuals to analyze the genetic diversity, population structure, and the migration rates among groups. In addition, we have tested for traces of previous genetic bottlenecks. Individuals from Eastern Finland and Russian Karelia were grouped in the same cluster (“Karelia”), while distinctive subpopulations of brown bears were detected in the north (“Pasvik”), and the east (“Pinega”). All three subpopulations displayed high genetic variation, with expected heterozygosities (H E) of 0.77–0.81, but differentiation among the clusters was relatively low (average F ST?=?0.051, P?<?0.001). No evidence of genetic bottlenecks in the past was found. We detected a highly significant isolation-by-distance (IBD) pattern. For Pasvik, self-recruitment was found to be very high (96%), pointing to the possibility of genetic isolation. In contrast, between Karelia and Pinega we detected high, bi-directional migration rates (~30%), indicating genetic exchange. Conclusively, despite of a substantial influence of IBD on the genetic structure in the region, we detected considerable variation in connectivity among the identified clusters that could not be explained solely by the distance between them.  相似文献   

20.
Species differentiation and local adaptation in heterogeneous environments have attracted much attention, although little is known about the mechanisms involved. Hyporhamphus intermedius is an anadromous, brackish‐water halfbeak that is widely distributed in coastal areas and hyperdiverse freshwater systems in China, making it an interesting model for research on phylogeography and local adaptation. Here, 156 individuals were sampled at eight sites from heterogeneous aquatic habitats to examine environmental and genetic contributions to phenotypic divergence. Using double‐digest restriction‐site‐associated DNA sequencing (ddRAD‐Seq) in the specimens from the different watersheds, 5498 single nucleotide polymorphisms (SNPs) were found among populations, with obvious population differentiation. We find that present‐day Mainland China populations are structured into distinct genetic clusters stretching from southern and northern ancestries, mirroring geography. Following a transplant event in Plateau Lakes, there were virtually no variations of genetic diversity occurred in two populations, despite the fact two main splits were unveiled in the demographic history. Additionally, dorsal, and anal fin traits varied widely between the southern group and the others, which highlighted previously unrecognized lineages. We then explore genotype–phenotype‐environment associations and predict candidate loci. Subgroup ranges appeared to correspond to geographic regions with heterogeneous hydrological factors, indicating that these features are likely important drivers of diversification. Accordingly, we conclude that genetic and phenotypic polymorphism and a moderate amount of genetic differentiation occurred, which might be ascribed to population subdivision, and the impact of abiotic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号