首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bottlenose dolphins (Tursiops truncatus) along the Gulf of Mexico are frequently exposed to blooms of the toxic alga, Karenia brevis, and brevetoxins associated with these blooms have been implicated in several dolphin mortality events. Studies on brevetoxin accumulation in dolphins have typically focused on analyses of carcasses from large‐scale die‐offs; however, data are scarce for brevetoxin loads in live individuals frequently exposed to K. brevis blooms. This study investigated in vivo brevetoxin exposure in free‐ranging bottlenose dolphins resident to Sarasota Bay, Florida, utilizing samples collected during health assessments performed during multiple K. brevis blooms occurring from 2003 to 2005. Brevetoxins were detected by ELISA and LC‐MS in 63% of bottlenose dolphins sampled (n= 30) concurrently with a K. brevis bloom. Brevetoxins were present in urine and gastric samples at concentrations ranging from 2 to 9 ng PbTx‐3 eq/g, and in feces at concentrations ranging from 45 to 231 ng PbTx‐3 eq/g. Samples from individuals (n= 12) sampled during nonbloom conditions (≤1,000 cells/L) were negative for brevetoxin activity. Brevetoxin accumulation data from this study complement dolphin carcass and prey fish data from the same study area, and aid in evaluating impacts of harmful algal blooms on sentinel marine animal species along the west Florida coast.  相似文献   

2.
Because of their vulnerable population status, assessing exposure levels and impacts of toxins on the health status of Gulf of Mexico marine turtle populations is critical. From 2011 to 2013, two large blooms of the red tide dinoflagellate, Karenia brevis, occurred along the west coast of Florida USA (from October 2011 to January 2012 and October 2012 to April 2013). Other than recovery of stranded individuals, it is unknown how harmful algal blooms affected the Kemp's ridley sea turtles (Lepidochelys kempii) inhabiting the affected coastal waters. It is essential to gather information regarding brevetoxin exposure in these turtles to determine if it poses a threat to marine turtle health and survival. From April 2012 to May 2013, we collected blood from 13 immature Kemp's ridley turtles captured in the Pine Island Sound region of the Charlotte Harbor estuary. Nine turtles were sampled immediately after or during the red tide events (bloom group) while four turtles were sampled between the events (non-bloom group). Plasma was analyzed for total brevetoxins (reported as ng PbTx-3 eq/mL), superoxide dismutase (SOD) activity, total protein concentration and protein electrophoretic profiles (albumin, alpha-, beta- and gamma-globulins). Brevetoxin concentrations ranged from 7.0 to 33.8 ng PbTx-3 eq/mL. Plasma brevetoxin concentrations in the nine turtles sampled during or immediately after the red tide events were significantly higher (by 59%, P = 0.04) than turtles sampled between events. No significant correlations were observed between plasma brevetoxin concentrations and plasma proteins or SOD activity, most likely due to the small sample size; however alpha-globulins tended to increase with increasing brevetoxin concentrations in the bloom group. Smaller (carapace length and mass) bloom turtles had higher plasma brevetoxin concentrations than larger bloom turtles, possibly due to a growth dilution effect with increasing size. The research presented here improves the current understanding of potential impacts of environmental brevetoxin exposure on marine turtle health and survival.  相似文献   

3.
We tested whether interactions among phytoplankton competitors affect toxin dynamics involving the red tide dinoflagellate Karenia brevis, whose brevetoxins incapacitate and kill coastal wildlife. The addition of a live diatom, Skeletonema costatum, led to decreased concentrations of brevetoxin B (PbTx-2) associated with K. brevis cells in co-culturing experiments and with two of three natural bloom samples containing K. brevis. Similar decreases in PbTx-2 concentration, but not PbTx-3 concentration, occurred when a mixture of brevetoxins (without live K. brevis cells) was exposed to S. costatum, indicating that S. costatum metabolizes waterborne PbTx-2. Liquid chromatography–mass spectrometry (LC–MS) and ELISA analyses indicated that PbTx-2 is probably not transformed into other brevetoxins or into known brevetoxin metabolites, and instead is biotransformed by a previously unrecognized mechanism. Four different S. costatum strains from around the world caused similar loss of PbTx-2, suggesting that evolutionary experience with K. brevis is not a pre-requisite for the ability to metabolize PbTx-2. Additionally, phytoplankton-associated bacteria were found to play no role in the loss of PbTx-2, as bacteria-free S. costatum strains metabolized PbTx-2. Finally, loss of waterborne PbTx-2 caused by exposure to a dinoflagellate, a cryptophyte, and two additional diatom species indicates that this phenomenon is widespread among phytoplankton. Our results unexpectedly suggest that competing phytoplankton species present during K. brevis blooms, and possibly other red tides, could mediate bloom toxicity and therefore ecosystem-level consequences of red tides.  相似文献   

4.
《Harmful algae》2009,8(1):152-157
Population dynamics of harmful algal bloom species are regulated both from the “bottom-up” by factors that affect their growth rate and from the “top-down” by factors that affect their loss rates. While it might seem apparent that eutrophication would have the greatest impact on factors affecting growth rates of phytoplankton (nutrient supply, light availability) the roles of top-down controls, including grazers and pathogens, cannot be ignored in studies of harmful bloom dynamics. Lags between the growth of phytoplankton and zooplankton populations, or disruption of zooplankton populations by adverse environmental conditions may be important factors in the initiation of plankton blooms under eutrophic conditions. Grazers that avoid feeding on harmful species and actively graze on competing species may also play important roles in bloom initiation. Grazers that are not affected by phytoplankton toxins and have growth rates comparable to phytoplankton (e.g. protozoan grazers) may have the potential to control the initiation of blooms. If the inhibition of grazers varies with cell density for blooms of toxic phytoplankton, eutrophication may increase the chances of blooms reaching threshold densities for grazer inhibition. In addition, secondary effects of eutrophication, including hypoxia and change in pH may adversely affect grazer populations, and further release HAB species from top-down control. The Texas brown tide (Aureoumbra lagunensis) blooms provide evidence for the role of grazer disruption in bloom initiation and the importance of high densities of brown tide cells in continued suppression of grazers.  相似文献   

5.
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.  相似文献   

6.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   

7.
Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.  相似文献   

8.
Ocean temperature extreme events such as marine heatwaves are expected to intensify in coming decades due to anthropogenic global warming. Reported ecological and economic impacts of marine heatwaves include coral bleaching, local extinction of mangrove and kelp forests and elevated mortalities of invertebrates, fishes, seabirds and marine mammals. In contrast, little is known about the impacts of marine heatwaves on microbes that regulate biogeochemical processes in the ocean. Here we analyse the daily output of a near‐global ocean physical–biogeochemical model simulation to characterize the impacts of marine heatwaves on phytoplankton blooms in 23 tropical and temperate oceanographic regions from 1992 to 2014. The results reveal regionally coherent anomalies of shallower surface mixing layers and lower surface nitrate concentrations during marine heatwaves. These anomalies exert counteracting effects on phytoplankton growth through light and nutrient limitation. Consequently, the responses of phytoplankton blooms are mixed, but can be related to the background nutrient conditions of the study regions. The blooms are weaker during marine heatwaves in nutrient‐poor waters, whereas in nutrient‐rich waters, the heatwave blooms are stronger. The corresponding analyses of sea‐surface temperature, chlorophyll a and nitrate based on satellite observations and in situ climatology support this relationship between phytoplankton bloom anomalies and background nitrate concentration. Given that nutrient‐poor waters are projected to expand globally in the 21st century, this study suggests increased occurrence of weaker blooms during marine heatwaves in coming decades, with implications for higher trophic levels and biogeochemical cycling of key elements.  相似文献   

9.
Brevetoxins are a family of ladder-frame polyether toxins produced by the marine dinoflagellate Karenia brevis. During blooms of K. brevis, inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in persons at the beach. Consumption of either shellfish or finfish contaminated by K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to binding at a defined site on, and subsequent activation of, voltage-sensitive sodium channels (VSSCs) in cell membranes (site 5). In addition to brevetoxins, K. brevis produces several other ladder-frame compounds. One of these compounds, brevenal, has been shown to antagonize the effects of brevetoxin. In an effort to further characterize the effects of brevenal, a radioactive analog ([3H]-brevenol) was produced by reducing the terminal aldehyde moiety of brevenal to an alcohol using tritiated sodium borohydride. A KD of 67 nM and Bmax of 7.1 pmol/mg protein were obtained for [3H]-brevenol in rat brain synaptosomes, suggesting a 1:1 matching with VSSCs. Brevenal and brevenol competed for [3H]-brevenol binding with Ki values of 75 nM and 56 nM, respectively. However, although both brevenal and brevenol inhibited brevetoxin binding, brevetoxin was completely ineffective at competition for [3H]-brevenol binding. After examining other site-specific compounds, it was determined that [3H]-brevenol binds to a site that is distinct from the other known sites on the sodium channel, including the brevetoxin site, (site 5) although some interaction with site 5 is apparent.  相似文献   

10.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

11.
《Harmful algae》2009,8(1):103-110
Cultural eutrophication is frequently invoked as one factor in the global increase in harmful algal blooms, but is difficult to definitively prove due to the myriad of factors influencing coastal phytoplankton bloom development. To assess whether eutrophication could be a factor in the development of harmful algal blooms in California (USA), we review the ecophysiological potential for urea uptake by Pseudo-nitzschia australis (Bacillariophyceae), Heterosigma akashiwo (Raphidophyceae), and Lingulodinium polyedrum (Dinophyceae), all of which have been found at bloom concentrations and/or exhibited noxious effects in recent years in California coastal waters. We include new measurements from a large (Chlorophyll a > 500 mg m−3) red tide event dominated by Akashiwo sanguinea (Dinophyceae) in Monterey Bay, CA during September 2006. All of these phytoplankton are capable of using nitrate, ammonium, and urea, although their preference for these nitrogenous substrates varies. Using published data and recent coastal time series measurements conducted in Monterey Bay and San Francisco Bay, CA, we show that urea, presumably from coastal eutrophication, was present in California waters at measurable concentrations during past harmful algal bloom events. Based on these observations, we suggest that urea uptake could potentially sustain these harmful algae, and that urea, which is seldom measured as part of coastal monitoring programs, may be associated with these harmful algal events in California.  相似文献   

12.
The sensitivity of bacteria to the marine neurotoxins, brevetoxins, produced by the dinoflagellate Karenia brevis and raphidophytes Chattonella spp. remains an open question. We investigated the bacteriocidal effects of brevetoxin (PbTx-2) on the abundance and community composition of natural microbial communities by adding it to microbes from three coastal marine locations that have varying degrees of historical brevetoxin exposure: (1) Great Bay, New Jersey, (2) Rehoboth Bay, Delaware and (3) Sarasota Bay, Florida. The populations with limited or no documented exposure were more susceptible to the effects of PbTx-2 than the Gulf of Mexico populations which are frequently exposed to brevetoxins. The community with no prior documented exposure to brevetoxins showed significant (p = 0.03) changes in bacterial abundance occurring with additions greater than 2.5 μg PbTx-2 L−1. Brevetoxin concentrations during K. brevis blooms range from ∼2.5 to nearly 100 μg L−1 with typical concentrations of ∼10–30 μg L−1. In contrast to the unexposed populations, there was no significant decrease in bacterial cell number for the microbial community that was frequently exposed to brevetoxins, which implies variable sensitivity in natural communities. The diversity in the bacterial communities that were sensitive to PbTx-2 declined upon exposure. This suggests that the PbTx-2 was selecting for or against specific species. Mortality was much higher in the 200 μg PbTx-2 L−1 treatment after 48 h and >37% of the species disappeared in the bacterial communities with no documented exposure. These results suggest that toxic red tides may play a role in structuring bacterial communities.  相似文献   

13.
Florida is a hotspot for cyano- and microalgal harmful algal blooms (HABs) with annual red-tide events off-shore and blooms of Lyngbya spp. commonly observed in both marine and freshwater environments. This region also provides extensive foraging habitat for large populations of herbivorous green turtles (Chelonia mydas) and manatees (Trichechus manatus latirostris). The exposure of aquatic organisms to HAB toxins is not well known and whilst acute exposures are better understood, the vulnerability of aquatic animals to chronic exposure from multiple HAB toxins over prolonged periods has rarely been addressed. This study aimed to identify the presence of toxic compounds produced by HAB species commonly found in Florida (brevetoxins, okadaic acid, saxitoxins and Lyngbya toxins) in tissues and gut samples from manatee and green sea turtles that stranded in Florida, USA. Muscle, liver and alimentary tract samples were opportunistically collected from 14 manatees and 13 green turtles that stranded on the Florida shoreline between December 2003 and February 2006. Samples from each animal were assessed for the presence of brevetoxin, okadaic acid, lyngbyatoxin-A and saxitoxin. Nine (64%) manatees and 11 (85%) turtles were found to have been exposed to one or more of the HAB toxins. Okadaic acid and saxitoxin were only found in alimentary tract samples, whereas brevetoxin was more widely distributed. No lyngbyatoxin-A was observed in any tissue samples. The majority of turtles (13) stranded on the Atlantic coast between St. Johns and Monroe counties, with one on the Gulf coast at Bay County, whereas nine manatees were stranded on the Gulf coast between Levy and Lee counties, with the remaining five between Volusia and Brevard counties on the Atlantic coast. This HAB toxin screen has identified that a large proportion of a random sample of turtles and manatees that stranded in Florida in 2003–2006 were exposed to HAB toxins. Most of the concentrations measured were low, and the toxins were directly linked to the death of only three of these animals. However, the presence of these compounds, and in some cases the presence of multiple HAB toxins in individual animals, indicates that turtles and manatees in Florida are exposed to deleterious compounds at sub-lethal levels in their environment, which could ultimately compromise their health.  相似文献   

14.
15.
A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.  相似文献   

16.
The taxonomic structure of phytoplankton populations in two Mediterranean coastal lagoons were compared with those of nearby marine waters (external waters). Mediterranean confined lagoons remain isolated for most the year and concentrate phytoplankton to a very high biomass. Coastal lagoons on the Mediterranean may, therefore, act as accumulators of neritic phytoplankton (including species related to harmful algal blooms). We examined whether coastal lagoons act as concentrators of marine toxic dinoflagellates during confinement periods, and the common environmental factors that favour growth of specific harmful species in the two ecosystems considered: coastal lagoons and external waters. An alternation between the dominance of diatoms and dinoflagellates was observed, coinciding with that described in Margalef's mandala, occurring in external waters as well as in coastal lagoons. Moreover, the temporal patter was different in the two ecosystems. Dinoflagellate species composition and their bloom period were highly variable in time and space, thus, species had to be analysed individually. Most of the dinoflagellate species found in this study were potentially harmful and high biomass producers. Harmful dinoflagellate species performed well in both, external waters and lagoons, but the specific species-dependent affinity to each of these environments determined which organisms bloom there. Thus, expansion of harmful algal blooms (HAB) to inland waters is not likely and some environmental factors such as the oxidised state of available nitrogen, became determinant to the success and bloom of a species in the coastal lagoon ecosystem.  相似文献   

17.
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.  相似文献   

18.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

19.
The increased frequency and intensity of drought with climate change may cause an increase in the magnitude and toxicity of freshwater cyanobacteria harmful algal blooms (CHABs), including Microcystis blooms, in San Francisco Estuary, California. As the fourth driest year on record in San Francisco Estuary, the 2014 drought provided an opportunity to directly test the impact of severe drought on cyanobacteria blooms in SFE. A field sampling program was conducted between July and December 2014 to sample a suite of physical, chemical, and biological variables at 10 stations in the freshwater and brackish reaches of the estuary. The 2014 Microcystis bloom had the highest biomass and toxin concentration, earliest initiation, and the longest duration, since the blooms began in 1999. Median chlorophyll a concentration increased by 9 and 12 times over previous dry and wet years, respectively. Total microcystin concentration also exceeded that in previous dry and wet years by a factor of 11 and 65, respectively. Cell abundance determined by quantitative PCR indicated the bloom contained multiple potentially toxic cyanobacteria species, toxic Microcystis and relatively high total cyanobacteria abundance. The bloom was associated with extreme nutrient concentrations, including a 20-year high in soluble reactive phosphorus concentration and low to below detection levels of ammonium. Stable isotope analysis suggested the bloom varied with both inorganic and organic nutrient concentration, and used ammonium as the primary nitrogen source. Water temperature was a primary controlling factor for the bloom and was positively correlated with the increase in both total and toxic Microcystis abundance. In addition, the early initiation and persistence of warm water temperature coincided with the increased intensity and duration of the Microcystis bloom from the usual 3 to 4 months to 8 months. Long residence time was also a primary factor controlling the magnitude and persistence of the bloom, and was created by a 66% to 85% reduction in both the water inflow and diversion of water for agriculture during the summer. We concluded that severe drought conditions can lead to a significant increase in the abundance of Microcystis and other cyanobacteria, as well as their associated toxins.  相似文献   

20.
《Harmful algae》2009,8(1):182-187
Organic nutrients are one of many factors considered to be important in the growth and proliferation of phytoplankton including many species that cause harmful algal blooms (HABs). Several studies have investigated the effects of known organic compounds on phytoplankton growth, however, the role of natural dissolved organic matter (DOM) in phytoplankton nutrition remains understudied at the compound level. This lack of research is due in part to analytical limitations for the characterization of DOM compounds. Electrospray ionization (ESI) mass spectrometry (MS) provides an unprecedented level of chemical information on thousands of organic compounds that comprise the bulk DOM pool. In this paper we provide a brief overview of some of the benefits and caveats of using ESI to investigate DOM in natural freshwater and marine systems and show an example of ESI-MS DOM characterization for a natural bloom of the raphidophyte Chattonella cf. verruculosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号