首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, lipolytic enzyme production by Thermus thermophilus HB27 at bioreactor scale has been investigated. Cultivation was performed in a 5-L stirred tank bioreactor in discontinuous mode, at an agitation speed of 200 rpm. Different variables affecting intra- and extra-cellular lipolytic enzyme production such as culture temperature and aeration rate have been analysed. The bacterium was able to grow within the temperature range tested (from 60 to 70 °C) with an optimum value of 70 °C for intra- and extra-cellular lipolytic enzyme production.On the other hand, various aeration levels (from 0 to 2.5 L/min) were employed. A continuous supply of air was necessary, but no significant improvement in biomass or enzyme production was detected when air flow rates were increased above 1 L/min. Total lipolytic enzyme production reached a maximum of 167 U/L after 3 days, and a relatively high concentration of extra-cellular activity was detected (40% of the total amount). Enzyme yield was around 158 U/g cells. Moreover, it is noteworthy that the lipolytic activity obtained operating at optimal conditions (70 °C and air flow of 1 L/min) was about five-fold higher than that attained in shake flask cultures  相似文献   

2.
《Process Biochemistry》2010,45(2):247-258
Response surface methodology was used to evaluate the quantitative effects of three independent variables: rapeseed moisture content (MC), enzymes dosage (ED) and conditioning temperature (T) on rapeseed oil yield (OY), efficiency of pressing (EP), and oxidative stability (OS). The highest OY (16.4%) and EP (42.8%) were obtained from pectolytic enzyme (0.1%) treated seeds (MC = 9%, T = 90 °C). The highest OS (12.6 h) was found for oil pressed from rapeseeds heated at 120 °C (MC = 11%), after the cellulolytic enzyme treatment. Results of OY, EP and OS determinations correlate with the predicted values calculated from the partial cubic models (PCMs) equations (R2 = 0.9995, 0.9994, 0.9974 for the cellulolytic enzyme-treated oils and 0.9900, 0.9900, 0.9990 for the pectolytic enzyme-treated oils). The predicted optimum MC = 9.5% and 8.6%, ED = 0.06% and 0.1%, T = 91.2 °C and 90.1 °C resulted in OY = 15.5% and 16.5%, EP = 40.4% and 43.0% for rapeseed oils from seeds treated with cellulolytic and pectolytic enzymes. OS values (12.6 h and 11.8 h) at the optimum conditions of MC = 11.0% and 10.1%, ED = 0.04% and 0.08%, T = 120.0 °C and 119.9 °C for the cellulolytic and pectolytic enzyme-treated oils were also calculated using PCM. Moreover, scanning electron microscopy revealed structural changes in the rapeseed after enzymatic treatment.  相似文献   

3.
Response surface methodology was used to evaluate the quantitative effects of three independent variables: rapeseed moisture content, concentration of the added enzymes and conditioning temperature, on the antioxidant capacity and total phenolic, tocopherol, and phospholipid contents in the enzyme-treated rapeseed oils. The highest antioxidant capacity (1220.0, 964.8 μmol TE/100 g) total phenolic (83.3, 74.0 mg SA/100 g) and phospholipid (12,532, 12,376 mg/kg) contents reveal two rapeseed oils extruded from seeds contained 11% moisture, treated with cellulolytic and pectolytic enzymes (0.05%), respectively, and heated at 120 °C. However, the highest content of total tocopherols was determined in rapeseed oils pressed from seeds with 7% moisture, after addition of cellulolytic (0.05%) and pectolytic (0.1%) enzymes, heated at 90 and 105 °C, respectively. Total phenolic and phospholipid contents in the enzyme-treated rapeseed oils correlated significantly (p < 0.0000001) with antioxidant capacities of oils (R2 = 0.8710 and 0.6581, respectively). Experimental results of the antioxidant capacity, total phenolic, tocopherol and phospholipid contents were close to the predicted values calculated from the polynomial response surface models equations (R2 = 0.9727, 0.9870, 0.8390 and 0.9706 for the cellulolytic enzyme-assisted rapeseed oils and R2 = 0.9148, 0.9489, 0.9426 and 0.9479 for the pectolytic enzyme-assisted rapeseed oils). The optimum rapeseed moisture content, enzyme concentration and conditioning temperature for the cellulolytic and pectolytic enzyme-treated rapeseed oils were 11% and 9.7%, 0.08% and 0.1%, and 120 °C, respectively.  相似文献   

4.
《Process Biochemistry》2010,45(3):363-368
The sulfidogenic activity of two mesophilic sulfate reducing enrichment cultures was studied in H2-fed membrane bioreactors. The two enrichment cultures had different origins; one of them was a mesophilic and the other a psychrotolerant mesophilic culture. The operational temperatures of the reactors were gradually changed: for one the temperature was increased from 9 to 30 °C and for the other it was decreased from 35 to 9 °C. The specific sulfidogenic activities were 21–31, 52–53 and 57–92 mmol SO42− g VSS−1 d−1 at 9, 15 and 30–35 °C, respectively. The sulfate reduction rate of the SRB stabilized to a lower level after the temperature was decreased. The percent electron flow to sulfate reduction was on average 24–32, 50 and 47–69% at 9, 15 and 30–35 °C, respectively. The capability of mesophilic SRB to oxidize electron donor decreased as the temperature was decreased. The results indicate that starting of the reactor operation at 9 °C resulted in higher sulfidogenic activity at sub-optimal temperatures and selective enrichment of the psychrotolerant species improved. The start-up of the reactor at 35 °C resulted in decreased sulfidogenic activity as the temperature was decreased. This indicates that the operational temperature of bioreactors with mesophilic SRB can be decreased to 15–20 °C and the sulfidogenic activity will decrease by 10–40%. Moreover, an operational temperature of 9 °C seems to be close to the lower limit of active sulfate reduction for the mesophilic enrichment cultures used in this study.  相似文献   

5.
Ultrafiltration is an attractive downstream processing technique for concentrating enzymes and could be considered the primary step of purification. However, the efficiency of this process is often limited by protein fouling and shear-induced enzyme inactivation, which decreases permeate flux and results in the loss of enzyme activity. Although the rejection of phytase was higher than 99%, the loss of the enzyme activity was 14% during operation, indicating that the shear forces generated in the filter have significant influences on the enzyme activity. Two preparations using glycerol (25% and 35%, v/v) as a cryo-protecting agent at different temperatures were studied. The preparation containing 35% glycerol retained 70% of the initial enzyme activity at 70 °C after 1 h and had more than 3 and 6 months storage half-life at 29 °C and 4 °C, respectively.  相似文献   

6.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

7.
The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).  相似文献   

8.
The purpose of this study was to evaluate the temperature response of photosynthesis in two common bean genotypes differing in crop yield when grown under warm conditions. The cultivar Nobre is sensitive to high temperatures, whereas Diplomata shows better crop yield under high temperatures. Plants were grown in a greenhouse prior to transferring to a controlled environment cabinet for the temperature treatments. In a first experiment, 30 days-old plants were subjected to a short exposure (1 day) at temperatures that varied from 9 °C to 39 °C. Diplomata had lower net CO2 assimilation rate (A) at 15 °C and 21 °C, but higher from 27 °C to 39 °C. Photosynthetic parameters calculated from modeling the response of A to the intercellular CO2 concentration suggested that the different temperature responses of the two genotypes are caused by different rates of diffusion of CO2 to the assimilation site, not by differences in biochemical limitations of photosynthesis. While stomatal conductance (gs) did not differ between the genotypes, mesophyll conductance (gm) was slightly greater for Nobre at 15 °C, but much higher in Diplomata from 21 °C to 39 °C. In a second experiment, no difference was observed in biomass accumulation between the two genotypes after growth for 24 days under a 35/20 °C (day/night) regime. Hence, the differences in photosynthesis did not cause variation in plant growth at the vegetative stage. The differential genotypic response of gm to temperature suggests that gm might be an important limitation to photosynthesis in Nobre, the common bean genotype sensitive to elevated temperature. However, more studies are needed employing other methods for gm evaluation to validate these results.  相似文献   

9.
An investigation was conducted on the production of β-galactosidase (β-gal) by different strains of Kluyveromyces, using lactose as a carbon source. The maximum enzymatic activity of 3.8 ± 0.2 U/mL was achieved by using Kluyveromyces lactis strain NRRL Y1564 after 28 h of fermentation at 180 rpm and 30 °C. β-gal was then immobilized onto chitosan and characterized based on its optimal operation pH and temperature, its thermal stability and its kinetic parameters (Km and Vmax) using o-nitrophenyl β-d-galactopyranoside as substrate. The optimal pH for soluble β-gal activity was found to be 6.5 while the optimal pH for immobilized β-gal activity was found to be 7.0, while the optimal operating temperatures were 50 °C and 37 °C, respectively. At 50 °C, the immobilized enzyme showed an increased thermal stability, being 8 times more stable than the soluble enzyme. The immobilized enzyme was reused for 10 cycles, showing stability since it retained more than 70% of its initial activity. The immobilized enzyme retained 100% of its initial activity when it was stored at 4 °C and pH 7.0 for 93 days. The soluble β-gal lost 9.4% of its initial activity when it was stored at the same conditions.  相似文献   

10.
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24 °C. At 30 s post-activation, motility rate was significantly higher at 4 °C compared to 14 and 24 °C, whereas highest swimming velocity was observed at 14 °C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14 °C and 24 °C than at 4 °C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.  相似文献   

11.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

12.
This work is focused on the inulinase production by solid-state fermentation (SSF) in a fixed-bed reactor (34 cm diameter and 50 cm height) with working capacity of 2-kg of dry substrate operated in batch and fed-batch modes. It was investigated different strategies for feeding the inlet air in the bioreactor (saturated and unsaturated air) as alternative to remove the metabolic heat generated during the microbial growth by evaporative cooling. The kinetic evaluation of the process carried out in batch mode using unsaturated air showed that the evaporative cooling decreasing the mean temperature of the solid-bed, although the enzyme production was lower than that obtained using saturated air. Results showed that maximum enzyme activity (586 ± 63 U gds−1) was obtained in the fed-batch mode using saturated air after 24 h of fermentation. The enzymatic extract obtained by fed-batch mode was characterized and presented optimum temperature and pH in the range of 52–57 °C and 4.8–5.2, respectively. For a temperature range from 40 to 70 °C the enzyme presented decimal reduction time, D-value, ranging from 5748 to 47 h, respectively. For a pH range from 3.5 to 5.5 the enzyme showed good stability, presenting D-values higher than 2622 h. In terms of Michaelis–Mentem parameters were demonstrated that the crude inulinase activity presented higher affinity for substrate sucrose compared to inulin.  相似文献   

13.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

14.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

15.
Climate changes, particularly the increase of temperature are among the main causes behind the decline of fertility in humans as well as animals. In this study, the effects of heat stress on some reproductive parameters of male cavies and mitigation strategies using guava leaves essential oil (GLEO) were studied. For this purpose, 40 male cavies aged 2.5–3 months and weighing between 348 and 446 g were divided into 4 groups of 10 animals each and subjected to the following temperatures: Ambient temperature (20–25 °C) for the control group, 35 °C for group 1, 45 °C for group 2 and 45 °C+100 µl GLEO/kg body weight, administered by gavage to animals for group 3. Exposure time of heat was 7 h per day for 60 days. Results reveal that the relative weights of testes, epididymis, vas deferens and seminal vesicles were hardly affected by the temperature levels considered (P>0.05). The mass and individual sperm motility was significantly lower (P<0.05) in cavies exposed to the temperature of 35 and 45 °C as compared with those which received GLEO and controls. The percentages of abnormal sperm and altered sperm DNA were higher in animals exposed to temperature of 35 and 45 °C as compared with the controls. The activity of superoxide dismutase significantly increased (P<0.05) in animals exposed to temperature of 45 °C and in those of 45 °C and orally treated with GLEO, compared with cavies exposed to temperature of 45 °C without receiving GLEO. The level of malondialdehyde was significantly increased (P<0.05) in animals exposed to temperature of 35 and 45 °C, whereas the level of nitric oxide was significantly lower (P<0.05) in exposed animals as compared with controls. It was concluded that the exposure of male cavies at 35 and 45 °C for 60 days induce heat stress that causes deterioration of sperm characteristics. These effects that can be mitigated by the administration of guava leaves essential oil.  相似文献   

16.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

17.
The purpose of this study was to investigate the effects of whole body cryotherapy (WBC) on a range of thermoregulatory measures. We also sought to examine the influence of sex and body composition. A convenience sample of 18 healthy participants (10 males and 8 females) (27±6 yr) volunteered for this study. Temperature (core, tympanic, skin and mean body), heart rate, blood pressure, and thermal comfort and sensation were recorded pre- and post- (immediately and every 5 min until 35 min post) exposure to a single bout of WBC (30 s at −60 °C, 150 s at 110 °C). Anthropometric data (height, weight, body surface area, body mass index, fat mass and fat free mass) were also recorded. No significant differences in temperature (core, tympanic, skin and mean body), heart rate, blood pressure, or thermal comfort / sensation were observed between male and females at baseline. Immediately post WBC mean body (male:31.9±0.8 °C; female:31.0±0.9 °C; ∆ mean body temperature:0.9±0.1 °C; P≤0.05, d=0.64) and mean skin (male:22.1±2.2 °C; female:19.6±2.8 °C; ∆ mean skin temperature:−2.5±0.6 °C; d=0.99, P≤0.05) temperature was significantly different between sexes. Sex differences were also observed in regional skin temperature (male thigh, 20.8±1.1 °C; female thigh, 16.7±1.1 °C, ∆ mean thigh skin temperature:−4.1 °C; d=3.72; male calf, 20.5±1.1 °C; female calf, 18.2±1 °C, ∆ mean calf skin temperature:−2.3±0.1 °C; d=3.61; male arm, 21.7±1 °C; female arm, 19±0.4 °C, ∆ mean arm skin temperature: −2.7±0.3 °C; d=3.54; P≤0.05). Mean arterial pressure was significantly different over time (P≤0.001) and between sexes (male 0 mins:94±10 mmHg; female 0 mins:85±7 mmHg; male 35 mins:88±7 mmHg; female 35 mins:80±6 mmHg; P≤0.05). Combined data set indicated a strong negative relationship between skin temperature and body fat percentage 35 min’ post WBC (r=−0.749, P≤0.001) and for core temperature and body mass index in males only (r=0.726, P≤0.05) immediately after WBC. There were no significant differences between sexes in any other variables (heart rate, tympanic and perceptual variables). We observed sex differences in mean skin and mean body temperature following exposure to whole body cryotherapy. In an attempt to optimise treatment, these differences should be taken into account if whole body cryotherapy is prescribed.  相似文献   

18.
Temperature is one of the most important abiotic factors affected by climate change. It determines physiological processes, ecological patterns and establishes the limits of geographic distribution of species. The induced thermal stress frequently results in physiological and behavioral responses and, in extreme cases, may lead to mortality episodes. Scrobicularia plana and Cerastoderma edule behavioral and mortality responses to temperature were evaluated. Specimens were sampled in the Mondego estuary (Portugal), acclimated and exposed to different temperature treatments (5–35 °C). Individual activity and mortality were registered during 120 h laboratory assays. Both species showed a thermal optimum for their activity (S. plana: 15–23 °C; C. edule: 20–23 °C), and survival was mainly affected by high temperature (S. plana: LC50120 h = 28.86 °C; C. edule: LC50120 h = 28.01 °C), with 100% mortality above critical values (≥32 °C). Results further indicated that both species are more affected the higher the temperature and the longer the exposure time. This study indicates that the occurrence of extreme climatic events, especially heat waves, may be particularly impairing for these species.  相似文献   

19.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

20.
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0–10 °C, 5–15 °C, and 10–20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3–14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5–15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号