首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient asymmetric Michael addition of cyclic ketones to β-nitrostyrenes using secondary diamine as an organocatalyst derived from l-proline and (R)-α-methylbenzyl amine has been described. This pyrrolidine based catalyst 1 was found to be very effective to synthesize various γ-nitrocarbonyl compounds in good yield (up to 81%) with excellent stereoselectivity (up to >99:1 dr and >99% ee).  相似文献   

2.
A benzoylthiourea–pyrrolidine catalyst was developed for the asymmetric Michael addition of ketones to chalcones. The corresponding products were obtained in high yields with high level of diastereoselectivities (up to 99:1 dr) and high level of enantioselectivities (up to 94% ee) under mild conditions.  相似文献   

3.
4.
JBIC Journal of Biological Inorganic Chemistry - Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue found in archaeal and eukaryotic translation...  相似文献   

5.
-Aminopropionitrile was adsorbed on the powdered D-quartz, recovered as N-trifluoroacetylalanyl-(+)-secondarybutyl ester, and analyzed by means of gas chromatography. The asymmetric result supporting the preferential adsorption of L-antipode was obtained and its significance in chemical evolution has been discussed.  相似文献   

6.
The first Novozym 435 lipase-catalyzed Morita–Baylis–Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.  相似文献   

7.
8.
9.
10.
11.
《Molecular cell》2023,83(13):2152-2154
  相似文献   

12.
13.
14.
15.
《Cell》2023,186(13):2722-2724
  相似文献   

16.
The reverse-docking of a TADDOL catalyst to rigid transition-state (TS) representations of an asymmetric hetero-Diels–Alder reaction is described. The resulting docking poses represent a simplified geometric model of the TS for the catalyzed reaction. The conformational space of the catalyst in proximity to the catalyst-free TS models is sampled stochastically and the energetically favored poses are subjected to a clustering procedure to highlight structural attributes compatible with organocatalysis. Each pose is scored and ranked based on its molecular-mechanics docking energy. The reverse-docking procedure reveals a clear energetic trend in favor of the experimentally preferred product enantiomers. Analysis of the best poses suggests a geometric model that is consistent with principles of molecular recognition, catalysis, and experimental data.   相似文献   

17.
18.
不同形态氮化合物添加对中国北方盐渍化草地土壤呼吸的影响 持续增加的氮沉降在提高陆地生态系统生产力的同时也会对土壤微生物产生显著影响;土壤呼吸由植物根系呼吸和土壤微生物呼吸组成,因此影响植物生产力和微生物的因子都会影响到土壤呼吸。以往氮富集对土壤呼吸的研究主要在土壤中性的草地生态系统开展,而对于盐渍化草地土壤呼吸是如何响应氮沉降的研究尚不多见,这限制了全球变化陆地生态系统土壤呼吸模型预测的准确性和完整性。本研究以中国北方农牧交错带盐渍化草地为研究对象,通过3年(2017–2019年)野外监测土壤呼吸及相关生物和非生物因子的变化,探讨了不同形态氮化合物添加(NH4NO3、(NH4)2SO4和NH4HCO3)对盐渍化草地土壤呼吸的影响及其调控机制。结果表明:(i)土壤呼吸受大气温度、土壤温度及降水的调控,呈现双峰的季节动态变化趋势和显著的年际差异。(ii)与对照相比,经过3年的处理,土壤呼吸在NH4NO3、(NH4)2SO4和NH4HCO3添加处理下分别提高了19.9%、13.0%和16.6%。(iii)NH4NO3添加对土壤呼吸较高的促进作用与较高的地上生物量、地下生物量以及土壤NO3含量有关。(iv)在NH4HCO3 添加处理下,土壤碳排放(土壤呼吸)显著增加而碳输入(净生产力)无显著改变,表明NH4HCO3添加会降低土壤碳的固持。(v)净地下生产力(BNPP)是盐渍化草地土壤呼吸的最主要调控因子,并且土壤阳离子浓度和pH值通过影响土壤微生物间接影响土壤呼吸。上述研究结果表明,草地添加NH4NO3的研究高估了氮沉降对土壤呼吸的影响,并且在碳循环预测模型中应充分考虑盐渍化草地土壤碳动态。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号