首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different probes such as far- and near-UV CD spectral signals, ANS binding, Trp fluorescence and three-dimensional fluorescence were used to study halogenol- versus alkanol-induced conformational transitions in the acid-denatured state (pH 1.0) of Aspergillus niger glucoamylase (GA). These alcohols showed significant retrieval of the protein structure, inducing both secondary and tertiary structural changes, as evident from the increase in the α-helix and decrease in ANS binding, respectively. However, halogenols were found more competent than alkanols, requiring lesser alcohol concentration to induce similar spectral change. The effectiveness of these alcohols showed the order: HFIP > TFE > 2-chloroethanol for halogenols while tert-butanol > 1-propanol > 2-propanol > ethanol > methanol for alkanols. Both Trp fluorescence and near-UV CD spectra showed anomalous pattern, though the order of effectiveness remained the same as found with far-UV CD spectra and ANS fluorescence. Three-dimensional fluorescence results of the acid-denatured state (pH 1.0) of GA in the presence of 5.5 M tert-butanol agreed well with the data obtained from far-UV CD and Trp fluorescence. All these results suggested the formation of partially folded states of GA obtained in the presence of these alcohols, being more effective with halogenols than alkanols.  相似文献   

2.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, the Candida rugosa lipase (CRL) was encapsulated within a chemically inert sol–gel support prepared by polycondensation with tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) in the presence and absence of sporopollenin and activated sporopollenin as additive. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of rasemic Naproxen methyl ester that was studied in aqueous buffer solution/isooctane reaction system. The results indicated that the sporopollenin based encapsulated lipase particularly had higher conversion and enantioselectivity compared to the sol–gel free lipase. In this study, excellent enantioselectivity (E > 400) has been noticed for most lipase preparations (E = 166 for the free enzyme) with an ee value ~98% for S-Naproxen. Moreover, (S)-Naproxen was recovered from the reaction mixture with 98% optical purity.  相似文献   

3.
With the most recent statistics available, a concrete emissions inventory is compiled for an input–output analysis to investigate the embodied CO2 emissions induced by fossil fuel combustion of Beijing economy in 2007. Results show that the total direct CO2 emissions amount to 9.45E + 07 t, within which 56.81% are released from coal combustion, 11.50% from coke combustion, 9.03% from kerosene combustion, 8.70% from natural gas and 6.40% from diesel, respectively. The average intensity of secondary industries (3.12 t/1E + 4 Yuan) is 0.65 times larger than that of primary industries (1.89 t/1E + 4 Yuan) and 1.58 times larger than that of tertiary industries (1.21 t/1E + 4 Yuan). The sector of Construction Industry contributes the largest share (21.98%) of CO2 emissions embodied in final demand for Beijing due to its considerable capital investment. Beijing is a net importer of embodied CO2 emissions with total import and export of 3.06E + 08 and 2.00E + 08 t, respectively. Results of this study provide a sound scientific database for effective policy making in Beijing to reduce CO2 emissions.  相似文献   

4.
A GH 26 endo-mannanase from Bacillus sp. CFR1601 was purified to homogeneity (Mw ∼39 kDa, specific activity 10,461.5 ± 100 IU/mg). Endo-mannanase gene (manb-1601, 1083 bp, accession No. KM404299) was expressed in Escherichia coli BL21 (DE3) and showed typical fingerprints of α/β proteins in the far-UV CD. A high degree of conservation among amino acid residues involved in metal chelation (His-1, 23 and Glu-336) and internal repeats (122–152 and 181–212) was observed in endo-mannanases reported from various Bacillus sp. Thermal inactivation kinetics suggested that metal ions are quintessential for stabilization of ManB-1601 structure as holoenzyme (Ea 87.4 kcal/mol, ΔH 86.7 kcal/mol, ΔS 186.6 cal/k/mol) displayed better values of thermodynamic parameters compared to metal-depleted ManB-1601 (Ea 47 kcal/mol, ΔH 45.7 kcal/mol, ΔS 64.7 cal/k/mol). EDTA treatment of ManB-1601 not only lead to transitions in both secondary and tertiary structure but also promulgated the population of conformational state that unfolds at lower temperature. ManB-1601 followed a three-state process for thermal inactivation wherein loss of tertiary structure preceded the concurrent loss of secondary structure and activity.  相似文献   

5.
With Candida antarctica lipase B (CALB)-catalyzed alcoholysis of (R,S)-naproxenyl 1,2,4-triazolide at the optimal conditions (i.e. anhydrous MTBE as the solvent, and methanol as the acyl acceptor at 45 °C) as the model system, the enzyme enantioselectivity in terms of VR/VS = 105.8 and specific activity for the fast-reacting (R)-azolide VR/(Et) = 0.979 mmol/(h g) were greatly improved in comparison with VR/VS = 8.0 and VR/(Et) = 0.113 mmol/(h g) of using (R,S)-naproxenyl 2,2,2-trifluoroethyl ester as the substrate. The resolution strategy was successfully extended to other (R,S)-profenyl 1,2,4-triazolides and lipases from Candida rugosa (Lipase MY) and Carica papaya (CPL) having opposite enantioselectivity to CALB. Moreover, the kinetic constants were estimated, compared with those obtained via hydrolysis, and employed for modeling time-course conversions of (R,S)-naproxenyl 1,2,4-triazolide in anhydrous MTBE. The advantages of easy substrate preparation, high enzyme reactivity and enantioselectivity, as well as easy product separation from the remaining substrate via reactive extraction demonstrate merits of using (R,S)-azolides but not the corresponding esters for the alcoholytic resolution.  相似文献   

6.
(Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Effects of various process conditions on (Z)-3-hexen-1-yl caproate synthesis employing germinated rapeseed lipase acetone powder in organic solvent were investigated. Rapeseed lipase catalyzed ester formation more efficiently with non-polar compared to polar solvents despite high enzyme stability in both types of solvents. Maximum ester yield (90%) was obtained when 0.125 M (Z)-3-hexen-1-ol and caproic acid were reacted at 25 °C for 48 h in the presence of 50 g/L enzyme in heptane. Enzyme showed little sensitivity towards aw with optimum yield at 0.45, while added water did not affect ester yield. Esterification reduced by increasing molecular sieves (>0.0125%, w/v). The highest yields of caproic acid were obtained with isoamyl alcohol (93%) followed by butanol and (Z)-3-hexen-1-o1 (88%) respectively reflecting the enzyme specificity for straight and branched chain alcohols. Secondary alcohols showed low reactivity, while tertiary alcohol had either very low reactivity or not esterified at all. A good relationship has been found between ester synthesis and the solvent polarity (log P value); while no correlation for the effect of solvents on residual enzyme activity was observed. It may be concluded that germinated rapeseed lipase is a promising biocatalyst for the synthesis of valuable green flavor note compound. The enzyme also showed a wide range of temperature stability (5–50 °C).  相似文献   

7.
Enzymatic synthesis of aromatic esters of four different sugar alcohols (xylitol, arabitol, mannitol, and sorbitol) with 3-(4-hydroxyphenyl)propionic acid was performed in organic solvent medium, using immobilized Candida antarctica lipase (Novozyme 435), and molecular sieves for control of the water content. The influence of reaction parameters on the conversion has been investigated, including reaction time, temperature, alcohol/acid molar ratio, and enzyme amount. The highest conversions (94% for xylitol, 98% for arabitol, 80% for mannitol, and 93% for sorbitol) were obtained in pure tert-butanol at 60 °C and 72 h reaction time, 0.3 alcohol/acid molar ratio, and 0.5 g/mol enzyme/substrate ratio. The isolated new sugar alcohols esters were identified by different spectral analyses. MALDI-TOF MS analysis showed the formation of monoesters, diesters, and small quantities of triesters for all investigated sugar alcohols. The catalytic efficiency of the enzyme was higher for the pentitol substrates, decreasing in the following order: arabitol > xylitol > sorbitol > mannitol. These new compounds could have interesting applications in food, pharmaceutical and cosmetic formulations.  相似文献   

8.
Two secondary alcohol glucosides, cyclohexyl-α-d-glucoside and cyclohexyl-β-d-glucoside, were synthesized via the condensation reaction of cyclohexanol with d-glucose in a biphase system catalyzed by α-glucosidase and β-glucosidase, respectively. The effects of pH, water content, glucose concentration and metal ions on the yield of glucosides were studied. The optimum catalytic conditions established for α-glucosidase was 25% (v/v) water content, 2.5 mol/L glucose concentration and pH 2.0, and for β-glucosidase was 30% (v/v) water content, 2.0 mol/L glucose and pH 5.0. The maximum yield of glucoside was 13.3 mg/mL for cyclohexyl-α-d-glucoside and 8.9 mg/mL for cyclohexyl-β-d-glucoside. Synthesis progress was monitored by TLC and quantitatively analyzed by pre-derived capillary gas chromatography (GC). The retention time was 12.34 min for the α isomer and 12.96 min for the β isomer, respectively. With an anomeric purity of more than 99.5%, the two glucosides display excellent site-specific catalysis by α- and β-glucosidase. Herein, we present a general method to produce anomerically pure glucosides via a one-step bio-reaction in a biphase system. This method could potentially be applied in glucosylation of primary and secondary alcohols or other reactions requiring glucosylation.  相似文献   

9.
Recent reports on immobilization of lipase from Arthrobacter sp. (ABL, MTCC 5125; IIIM isolate) on insoluble polymers have shown altered properties including stability and enantioselectivity. Present work demonstrates a facile method for the preparation of enantiopure β-amino alcohols by modulation of ABL enzyme properties via immobilization on insoluble as well as soluble supports using entrapment/covalent binding techniques. Efficacies of immobilized ABL on insoluble supports prepared from tetraethylorthosilicate/aminopropyltriethoxy silane and soluble supports derived from copolymerization of N-vinyl pyrrolidone-allylglycidyl ether (ANP type)/N-vinyl pyrrolidone-glycidyl methacrylate (GNP type) for kinetic resolution of masked β-amino alcohols have been studied vis-à-vis free ABL enzyme/wet cell biomass. The immobilized lipase on different insoluble/soluble supports has shown 21–110 mg/g protein binding and 30–700 U/g activity for hydrolyzing tributyrin substrate. The findings have shown a significant enhancement in enantioselectivity (ee 99%) vis-à-vis wet cell biomass providing ee 70–90% for resolution of β-amino alcohols.  相似文献   

10.
《Phytochemistry》1998,49(6):1741-1744
The absolute stereochemistry of the epoxide group in alpinia epoxide [14,15-epoxylabda-8(17),12-dien-16-al (E)] has been determined by simultaneous reduction of the aldehyde and epoxide functional groups in this molecule to primary and secondary alcohols, followed by selective protection of the primary alcohol and derivitization of the secondary alcohol with S(+) and R(−) MTPCl as Mosher esters. Changes in 1H NMR chemical shifts for all positions in these two esters were determined by 2D-NMR and used to infer the absolute stereochemistry of the epoxide group in the natural product alpinia epoxide.  相似文献   

11.
This work aimed to assess the effect of sub-/super-critical CO2 on the structure and activity of Candida rugosa Lip7 (CRL7) in its solution form. The structure was examined by SDS-PAGE gel electrophoresis, circular dichroism (CD) and fluorescence spectra photometry. Results revealed that the primary structure remained intact after sub-/super-critical CO2 treatment, and the secondary structure altered at the pressure of 10 MPa and temperature 40 °C for 30 min incubation, but it was reflex to its native form with increasing incubation time up to 150 min under 10 MPa and 40 °C. Meanwhile, the tertiary structure via fluorescence spectra analysis showed that the intensity of the maximal emission wavelength at 338 nm decreased under the conditions of 10 MPa and 40 °C for 150 min. Furthermore, the residue hydrolysis activity and kinetics constants (Vmax and Km) of CRL7 treated with sub-/super-critical CO2 were also investigated. In cases of 6 MPa and 35 °C, or 10 MPa and 40 °C for 30 min, activity variance of CRL7 was maybe caused by its secondary structure alteration. But in case of 10 MPa and 40 °C for 150 min, the tertiary structure change was perhaps responsibility for CRL7 activity enhancement.  相似文献   

12.
Fatty alcohols are important components of surfactants and cosmetic products. The production of fatty alcohols from sustainable resources using microbial fermentation could reduce dependence on fossil fuels and greenhouse gas emission. However, the industrialization of this process has been hampered by the current low yield and productivity of this synthetic pathway. As a result of metabolic engineering strategies, an Escherichia coli mutant containing Synechococcus elongatus fatty acyl-ACP reductase showed improved yield and productivity. Proteomics analysis and in vitro enzymatic assays showed that endogenous E. coli AdhP is a major contributor to the reduction of fatty aldehydes to fatty alcohols. Both in vitro and in vivo results clearly demonstrated that the activity and expression level of fatty acyl-CoA/ACP reductase is the rate-limiting step in the current protocol. In 2.5-L fed-batch fermentation with glycerol as the only carbon source, the most productive E. coli mutant produced 0.75 g/L fatty alcohols (0.02 g fatty alcohol/g glycerol) with a productivity of up to 0.06 g/L/h. This investigation establishes a promising synthetic pathway for industrial microbial production of fatty alcohols.  相似文献   

13.
《Process Biochemistry》2007,42(6):1021-1027
Candida rugosa lipase (CRL) was immobilized on Amberlite XAD 7 and the advantage of immobilization under the best reaction conditions in achieving high activity and enantioselectivity was shown for the hydrolysis of racemic Naproxen methyl ester. The performance of CRL was found to be better when the enzyme was immobilized at the temperature and pH values where higher conversion and enantioselectivity were obtained. The effects of immobilized lipase load, temperature, pH and substrate concentration on the conversion and enantioselectivity toward S-Naproxen production in aqueous phase/isooctane biphasic batch system were also evaluated. The increase in immobilized lipase load in 320–800 U/mL range increased the conversion of the substrate and enantioselectivity for S-Naproxen. The kinetic resolution of racemic Naproxen methyl ester conducted at the temperatures of 40, 45 and 50 °C and at the pH values of 4, 6, 7.5 and 9 resulted in the highest conversion and enantioselectivity at 45 °C and pH 6. Higher concentration of racemic Naproxen methyl ester than 10 mg/mL decreased both the conversion and enantioselectivity. CRL, which was immobilized at the temperature and pH values where the enzyme was more enantioselective, was successfully used in three successive batch runs each of 180 h. The highest enantiomeric ratio achieved in the S-Naproxen production was 174.2 with the conversion of 49%.  相似文献   

14.
Coniferyl alcohol is one of the major precursors of lignin; the most abundant aromatic compound and a natural resource currently receiving attention because of the value-added metabolites resulting from its degradation. Growth study of Streptomyces albogriseolus KF977548 (strain AOB) isolated from decaying wood residues in a tropical estuarine ecosystem was carried out using coniferyl alcohol as a sole carbon source. Cell growth and metabolite production were monitored at 24 h interval by dry weight measurements and HPLC, LC–MS-DAD analyses. Biochemical and PCR assays were carried out to detect the major catabolic enzymes of interest. Strain AOB utilized coniferyl alcohol completely within 72 h (μ = 0.204 h−1, Td = 3.4 h). Laccase and peroxidase were released into the growth medium up to 0.099 and 98 μmol/mL respectively. Protocatechuate 3, 4-dioxygenase and demethylase were detected in the genome whilst ortho-adipate pathway was clearly indicated. Growth on coniferyl alcohol or caffeic acid as mono substrates resulted in the production of secondary metabolites identified by HPLC–MS as 1-caffeoylquinic and 3,4,5-tricaffeoylquinic acids, known as chlorogenic acids, in the culture medium. The microbial production of chlorogenic acids from a lignin-related substrate base by strain AOB could arouse a plausible biotechnological process.  相似文献   

15.
Although Burkholderia cepacia lipase (BCL) has been proved to be a potential catalyst for chiral resolution, it is rarely applied in industry because of the low catalysis activity and poor stability of the free form. In this article, BCL was immobilized on the phenyl-modified ordered mesoporous silica (Ph-OMMs) to obtain a novel immobilized lipase. Benefits from the bottle-neck mesoporous structure, high loading of BCL could be completed within only 15 min. When BCL@Ph-OMMs was used as a catalyst for the resolution of 1-phenylethanol, up to 50% conversion with more than 99% ees was obtained within only 25 min, which is about 65-folds faster than that of the free lipase. Stabilized BCL@Ph-OMMs was successfully used for the ultrafast resolution of six secondary alcohols by selectivity transesterification, which reached high conversion (50%) and high enantioselectivity (≥99%) within 20–180 min. The activity of BCL@Ph-OMMs was kept relatively constant in 50 consecutive cycles, which is the best result among the reported immobilized lipases. The study suggests that BCL@Ph-OMMs is an attractive catalyst in industrial applications.  相似文献   

16.
《Aquatic Botany》2007,86(2):107-116
The partitioning of latent heat flux (QE) to vascular plant and moss surface components was assessed for a Sphagnum-dominated bog with a hummock–hollow surface having a sparse canopy of low shrubs. Results from porometry and eddy covariance measurements of QE showed evaporation from the moss surface ranged from greater than 50% of total QE early in the growing season to less than 20% after a dry period toward the end of the growing season. Both soil moisture and vapour pressure deficit (Da) affected this partitioning with drier moss and peat, lower water table, and smaller Da all reducing moss QE. Daily maximum moss QE ranged from greater than 200 W m−2 early in the growing season to less than 100 W m−2 during a dry period. In contrast, vascular contribution to total QE increased over the season from a daily maximum of about 150 W m−2 to 250 W m−2 due to increase in leaf area by leaf replacement and emergence and to drying of the moss surface. Porometry results showed average daily maximum conductance from bog shrubs was near 8 mm s−1. These conductance values were smaller than those reported for vascular plants from more nutrient-rich wetlands. The effect of increases in Da on vascular QE were moderated by decreases in stomatal conductance. At constant available energy, vascular leaf conductance was reduced by as much as 2 mm s−1 and moss surface conductance was enhanced by up to 3 mm s−1 by large Da. Considering vascular and non-vascular water transport characteristics and frequency of water table position and given the observed variations of QE partitioning with water table location and moss and peat water content, it is suggested that modelling efforts focus on how dry hummocks and wet hollows each contribute to QE, especially as related to Da and soil moisture dynamics.  相似文献   

17.
In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein–protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive with cultures source of pheromone Er-1. The comparison between the Er-1 and Er-13 crystal structures reinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the different behaviour between the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structure unique to the Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromone fold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecific structural conservation.  相似文献   

18.
A new, acyclic NAD-analog, acycloNAD+ has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD+ with a redox potential of −324 mV and a 341 nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD+ by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD+. The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon–hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD+. In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD+ by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD+ has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.  相似文献   

19.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

20.
A selective, sensitive and high throughput liquid chromatography–tandem mass spectrometry (LC–ESI-MS/MS) method has been developed and validated for the chromatographic separation and quantitation of (E)-entacapone and (Z)-entacapone in human plasma. Sample clean-up involved liquid–liquid extraction (LLE) of both the isomers and carbamazepine used as internal standard from 500 μL of human plasma. Both the analytes were chromatographically separated with a resolution factor of 3.0 on a Gemini C18 (50 mm × 4.6 mm, 5 μm particle size) analytical column using 1% formic acid and methanol (50:50, v/v) as the mobile phase. The selectivity factor (α) of the column for the separation was 2.0, based on the capacity factors of 2.6 and 1.3 for (E)- and (Z)-isomers respectively. The parent  product ion transitions for both the isomers (m/z 306.1  233.0) and IS (m/z 237.3  194.2) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and positive ion mode. The method was validated over the concentration range of 24.3–6076 ng/mL and 23.8–5960 ng/mL for (E)-entacapone and (Z)-entacapone respectively. Matrix effect was assessed by post-column analyte infusion experiment and the process/extraction efficiency found was 94.3% and 89.3% for (E)- and (Z)-isomers respectively. The method was successfully applied to a pivotal bioequivalence study in 36 healthy human subjects after oral administration of 200 mg (E)-entacapone tablet formulation under fasting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号