首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
To understand the underlying mechanisms generating population genetic divergence and structure is a critical step towards understanding how biodiversity evolves at both micro‐ and macroevolutionary scales. At the population‐level, geographic isolation as well as adaptation to local environmental conditions can generate different patterns of spatial genetic variation among populations. Specific organismal traits as well as the characteristics of the environment might influence the process under which populations become spatially structured. In a From the Cover article in this issue of Molecular Ecology, Myers et al. (2019) present an integrative approach to investigate if the Cochise filter barrier (CFB), lying between the Sonoran and Chihuahuan Deserts, and the surrounding river networks were relevant in driving the population structure of 13 snake species. While local environmental conditions seem to predominantly contribute to lineage divergence, traditionally studied vicariant barriers seem to have played a minor role in shaping population structure across the studied species. This study brings insights into how population‐level processes could contribute to the formation of incipient species, which ultimately might affect the speciation rates measured at macroevolutionary scales. Hence, Myers et al. (2019) not only represents an integrative study aiming to understand the drivers of population genetic divergence, but also a potentially important contribution to our ongoing challenge in linking micro‐ and macroevolution.  相似文献   

3.
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.  相似文献   

4.
Contemporary evolution of secondary sexual traits in the wild   总被引:2,自引:0,他引:2  
  相似文献   

5.
    
Evolution is a continuous trial and error process in which most lineages go extinct without leaving fossil remains. Many of these lineages would be closely related and occasionally hybridized with lineages that gave rise to extant species. Hence, it is likely that one can find genetic signatures of these ancient introgression events in present-day genomes, so-called ghost introgression. The increasing availability of high-quality genome assemblies for non-model organisms and the development of more sophisticated methods for detecting introgression will undoubtedly reveal more cases of ghost introgression, indicating that the Tree of Life is even more reticulated than assumed. The presence of ghost introgression has important consequences for the study of numerous evolutionary processes, including adaptation, speciation, and macroevolutionary patterns. In addition, detailed studies of introgressed regions could provide insights into the morphology of the extinct lineage, providing an unexpected link between genomics and the fossil record. Hence, new methods that take into account ghost introgression will need to be developed.  相似文献   

6.
The diversity of body sizes of organisms has traditionally been explained in terms of microevolutionary processes: natural selection owing to differential fitness of individual organisms, or to macroevolutionary processes: species selection owing to the differential proliferation of phylogenetic lineages. Data for terrestrial mammals and birds indicate that even on a logarithmic scale frequency distributions of body mass among species are significantly skewed towards larger sizes. We used simulation models to evaluate the extent to which macro- and microevolutionary processes are sufficient to explain these distributions. Simulations of a purely cladogenetic process with no bias in extinction or speciation rates for different body sizes did not produce skewed log body mass distributions. Simulations that included size-biased extinction rates, especially those that incorporated anagenetic size change within species between speciation and extinction events, regularly produced skewed distributions. We conclude that although cladogenetic processes probably play a significant role in body size evolution, there must also be a significant anagenetic component. The regular variation in the form of mammalian body size distributions among different-sized islands and continents suggests that environmental conditions, operating through both macro- and microevolutionary processes, determine to a large extent the diversification of body sizes within faunas. Macroevolution is not decoupled from microevolution.  相似文献   

7.
    
Ring species are groups of organisms that dispersed along a ring‐shaped region in such a way that the two ends of the population that meet after many generations are reproductively isolated. They provide a rare opportunity to understand the role of spatial structuring in speciation. Here, we simulate the evolution of ring species assuming that individuals become sexually isolated if the genetic distance between them is above a certain threshold. The model incorporates two forms of dispersal limitation: exogenous geographic barriers that limit the population range and endogenous barriers that result in genetic structuring within the population range. As expected, species' properties that reduce gene flow within the population range facilitate the evolution of reproductive isolation and ring species formation. However, if populations are confined to narrow ranges by geographic barriers, ring species formation increases when local mating is less spatially restricted. Ring species are most likely to form if a population expands while confined to a quasi‐unidimensional range but preserving high mobility in the direction of the range expansion. These conditions are unlikely to be met or persist in real populations and may explain why ring species are rare.  相似文献   

8.
    
Polyploidy has played an important role in angiosperm diversification, but how polyploidy contributes to reproductive isolation remains poorly understood. Most work has focused on postzygotic reproductive barriers, and the influence of ploidy differences on prezygotic barriers is understudied. To address these gaps, we quantified hybrid occurrence, interspecific self‐compatibility differences, and the contributions of multiple pre‐ and postzygotic barriers to reproductive isolation between diploid Erythronium mesochoreum (Liliaceae) and its tetraploid congener Erythronium albidum. Reproductive isolation between the study species was nearly complete, and naturally occurring hybrids were infrequent and largely sterile. Although postzygotic barriers effected substantial reproductive isolation when considered in isolation, the study species’ spatial distributions and pollinator assemblages overlapped little, such that interspecific pollen transfer is likely uncommon. We did not find evidence that E. albidum and E. mesochoreum differed in mating systems, indicating that self‐incompatibility release may not have fostered speciation in this system. Ultimately, we demonstrate that E. albidum and E. mesochoreum are reproductively isolated by multiple, hierarchically‐operating barriers, and we add to the currently limited number of studies demonstrating that early acting barriers such as pollinator‐mediated isolation can be important for effecting and sustaining reproductive isolation in diploid‐polyploid systems.  相似文献   

9.
10.
Drosophila lacertosa is widely distributed from northern India to Far East of Russia throughout China. We have studied geographical distributions of three kinds of chromosomal karyotypes, type D (2n=10, 4 pairs of V-shaped metacentric chromosomes and a pair of micro-chromosomes), type L (2n=10, 5V with a pair of large-sized hetero-chromatic autosomes) and type M (2n=10, 5V with middle-sized ones). Type D was found exclusively in local populations of D. lacertosa distributed in Yun-Gui Plateau, southwestern China. Both type L and M have a wide range of distribution, and the former occurred in subtropical regions of China including Taiwan Island, whereas the latter in cool temperate regions of East Asia covering Far East of Russia, Korea and the Japan Islands. A strong premating isolation was detected between flies with type D and those with type L or M. These data demonstrate that genetic differentiation leading to cryptic speciation might have occurred in natural populations of Drosophila lacertosa.  相似文献   

11.
    
Macroevolutionary processes dictate the generation and loss of biodiversity. Understanding them is a key challenge when interrogating the earth–life system in deep time. Model‐based approaches can reveal important macroevolutionary patterns and generate hypotheses on the underlying processes. Here we present and document a novel model called REvoSim (Rapid Evolutionary Simulator) coupled with a software implementation of this model. The latter is available here as both source code (C++/Qt, GNU General Public License) and as distributables for a variety of operating systems. REvoSim is an individual‐based model with a strong focus on computational efficiency. It can simulate populations of 105–107 digital organisms over geological timescales on a typical desktop computer, and incorporates spatial and temporal environmental variation, recombinant reproduction, mutation and dispersal. Whilst microevolutionary processes drive the model, macroevolutionary phenomena such as speciation and extinction emerge. We present results and analysis of the model focusing on validation, and note a number potential applications. REvoSim can serve as a multipurpose platform for studying both macro and microevolution, and bridges this divide. It will be continually developed by the authors to expand its capabilities and hence its utility.  相似文献   

12.
    
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise FST between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.  相似文献   

13.
    
A central question in evolutionary biology concerns the accumulation of reproductive barriers during speciation. However, separating the reproductive barriers that have led to speciation from those that have secondarily accumulated (i.e. after initial divergence) is a widely recognized problem. Ideal candidate species for overcoming this problem are young species, where time for additional barriers to accrue has been limited. In the present study, we add to previous studies investigating the strength of reproductive barriers between the parapatric damselflies Ischnura elegans and Ischnura graellsii by quantifying seven prezygotic barriers between the allopatric pairs of I. elegans and Ischnura genei, as well as I. graellsii and I. genei. Specifically, we measured four premating (temporal, sexual, mechanical I, and mechanical II) and three postmating (oviposition success, fecundity, and fertility) barriers using experimental approaches and, for first time, we investigated the mechanisms causing mechanical isolation, which is the strongest reproductive barrier in ischnurans. The findings of the present study support the notion that premating barriers are generally strong and contribute significantly to total reproductive isolation in young lineages (65–98%), although they never solely lead to complete isolation. Asymmetry was generally stronger in premating than in postmating barriers, and was driven mostly through asymmetry in mechanical isolation, which is caused by morphological divergence of secondary sexual appendages. We found that barriers act multiplicatively in all species combinations tested, with the exception of sexual isolation, which was not detected. Our results are consistent with a recent allopatric speciation scenario driven by differences in male anal appendages, either impeding copulation or affecting female preferences. Taken together, the results from this and previous studies in diverse odonate genera suggest that premating barriers have evolved rapidly in ischnuran damselflies and, although reproductive isolation in ischnurans is more commonly the result of several barriers acting together, morphological divergence of secondary sexual appendages appears to be a common factor facilitating premating isolation in this group. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 485–496.  相似文献   

14.
Current concepts of macroevolution–the origin and diversification of higher taxonomic categories-are reviewed. A reductionist hypothesis, seen in the light of models based on extant species, seems to be corroborated. There appears to be no reason to think that macroevolution is a natural phenomenon distinct from a speciation event giving rise to a new phyletic lineage. Neidier is it necessary to postulate any quantum element in that speciation event.  相似文献   

15.
  总被引:3,自引:0,他引:3  
House mice offer a powerful system for dissecting the genetic basis of phenotypes that isolate species in the early stages of speciation. We used a series of reciprocal crosses between wild-derived strains of Mus musculus and M. domesticus to examine F(1) hybrid male sterility, one of the primary phenotypes thought to isolate these species. We report four main results. First, we found significantly smaller testes and fewer sperm in hybrid male progeny of most crosses. Second, in some crosses hybrid male sterility was asymmetric and depended on the species origin of the X chromosome. These observations confirm and extend previous findings, underscoring the central role that the M. musculus X chromosome plays in reproductive isolation. Third, comparisons among reciprocal crosses revealed polymorphism at one or more hybrid incompatibilities within M. musculus. Fourth, the spermatogenic phenotype of this polymorphic interaction appears distinct from previously described hybrid incompatibilities between these species. These data build on previous studies of speciation in house mice and show that the genetic basis of hybrid male sterility is fairly complex, even at this early stage of divergence.  相似文献   

16.
    
Species in the Australian marsupial genus Antechinus exhibit a short annual mating period which is concluded by the abrupt death of all males. The timing of the annual rut within each of the ten described species varies little from year to year at any given locality, but for some species can differ by up to four months between locations. To determine the influence of photoperiod in regulating the precise interannual synchrony of mating and ovulation, we first investigated populations of each species at over 300 localities throughout their geographical ranges to identify the time of reproduction. We then compared the absolute photoperiod and the rate of change of photoperiod prevailing at the time of reproduction in all population localities. A different, and characteristic, rate of change of photoperiod was correlated strongly with the reproductive timing of four species; there was probably a correlation with reproduction in four more species, but sample sizes were small. For two species, there was no obvious photoperiodic correlation with time of reproduction. There was no evidence that absolute photoperiod or ambient temperature explained the synchrony or narrow timespan of reproduction among any species of Antechinus . Different species-specific ovulatory responses to photoperiod appear to separate the timing of reproduction in sympatric species, with the larger member of species pairs usually breeding first. We suggest that photoperiodic cues (1) allow females to produce young during seasons when food is most reliable and abundant and their energetic demands are maximal; (2) facilitate allochronic isolation between sympatric congeners, and (3) maximize body size differences and hence ecological separation between species.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 365–379.  相似文献   

17.
    
Understanding the evolution of reproductive isolation is tantamount to describing the origin of species. Therefore, a primary goal in evolutionary biology is to identify which reproductive barriers are most important to the process. To achieve this goal, the strength of multiple forms of isolation must be compared in an equivalent manner. However, a diversity of methods has been used to estimate barrier strength, falling into several mathematically distinct categories. This study provides a unified method for calculating isolation that relates the amount of gene flow experienced by taxa to random expectations in a simple linear framework. This approach has three distinct advantages over previous methods: (1) it is directly related to gene flow, (2) it is symmetrical, such that measures in both the positive and negative range are comparable, and (3) it is equivalent between broad categories of reproductive isolation, allowing for appropriate comparisons. This linear formulation can be adjusted for use in all forms of isolation, and can accommodate cases in which null expectations for con‐ and heterospecific gene flow differ. Additionally, this framework can be used to calculate total reproductive isolation and the relative contributions of individual barriers.  相似文献   

18.
The speed of ecological speciation   总被引:5,自引:1,他引:5  
  相似文献   

19.
    
In general, heterozygosity is considered to be advantageous, primarily because it masks the effects of deleterious recessive alleles. However, there is usually a reduction in fitness in individuals that are heterozygous due to the pairing of two species (heterospecific). Because the parental alleles arose along separate evolutionary paths, they may not function properly when brought together within an individual. The formation of these unfit interspecies hybrids is one of the mechanisms that maintains species isolation. Interestingly, it has been observed that later-generation individuals resulting from a backcross to one parent are more often sterile than those resulting from a backcross to the other parent, but the mechanism underlying this trend is unknown. Here, I show that one direction of backcross produces offspring with more heterospecific genome, and that this is correlated with the directionality seen in backcross hybrid sterility. Therefore, the directionality in sterility is likely due to the different amounts of heterospecific genome present in the two backcrosses. Surprisingly, in spite of the potential fitness consequences, I also find that interspecies laboratory backcrosses in general yield an excess of heterospecific individuals, and that this trend is consistent across multiple taxa.  相似文献   

20.
Yeast can be engineered to carry human chromosomes; highly diverged ducks can produce viable, fertile offspring; and mitochondrial genes can move between widely divergent groups of plants. Some sunflower or oak species have porous genomes; mice, crickets, birds, and butterflies form hybrid zones; and bacterial lineages have been exchanging genes for several billion years. Even so, nature is discrete and full of species. Here, we discuss some of the ingredients that make nature discrete and can lead to clustering even in the presence of gene flow. Many of these results have been recently published, in this issue and elsewhere, and were discussed at the Genetics of Speciation Symposium held at the annual meeting of the American Genetics Association, Vancouver, Canada, in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号