首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The harmful dinoflagellate Cochlodinium polykrikoides is known to cause fish death by gill-clogging when its abundance exceeds approximately 1000 cells ml−1. Thus, red tides of this dinoflagellate have caused considerable loss in the aquaculture industry worldwide. Typhoons carrying strong winds and heavy rains may alter the process of red tide events. To investigate the effects of typhoons on C. polykrikoides red tides, daily variations in the abundance of C. polykrikoides, and wind speeds in three study areas in the South Sea of Korea were analyzed during the periods of C. polykrikoides red tides and the passage of 14 typhoons during 2012–2014. The typhoons differentially affected Cochlodinium red tides during the study period, and the daily maximum wind speed generated by the typhoon was critical. Four typhoons with daily maximum wind speeds of >14 m s−1 eliminated Cochlodinium red tides, while three typhoons with daily maximum wind speed of 5–14 m s−1 only lowered the abundance. However, other typhoons with daily maximum wind speeds of <5 m s−1 had no marked effect on the Cochlodinium abundance. Therefore, typhoons may sometimes eliminate C. polykrikoides red tide events, or reduce cell abundances to a level that is not harmful to caged fish cultivated in aquaculture industries. Thus, typhoons should be considered when compiling red tide dynamics and fish-kill models.  相似文献   

2.
Harmful Cochlodinium polykrikoides blooms have frequently appeared and caused fatal harm to aquaculture in Korean coastal waters since 1995. We investigated the applicability of GOCI, the world's first Geostationary Ocean Color Imager, in monitoring the distribution and temporal movement of a harmful algal bloom (HAB) that was discovered in the East Sea near the Korean peninsula in August 2013. We identified the existence of C. polykrikoides at a maximum cell abundance of over 6000 cells/mL and a chlorophyll a concentration of over 400 mg/m3. In areas of C. polykrikoides blooms, GOCI remote sensing reflectance (Rrs) spectra demonstrated the typical radiometric features of a HAB, and from the diurnal variations using GOCI-derived chlorophyll concentration images, we were able to identify the vertical migration of the red tide species. We also found that the formation and propagation of the HAB had relations with cold water mass in the coastal region. GOCI can be effectively applied to the monitoring of short-term and long-term movements of red tides.  相似文献   

3.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

4.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml−1 eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml−1 within 24 h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml−1 to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24 h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800 cells ml−1 A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48 h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1 m3 stock culture of A. pohangense at 4000 cells ml−1 is calculated to remove all C. polykrikoides cells in ca. 200 m3 within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml−1 with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.  相似文献   

5.
Although the diversity of dinoflagellates has been intensively studied in several locations in the Mediterranean Sea since the 1950s, it is only during the last two decades that the morphotype of the toxic unarmoured dinoflagellate Cochlodinium polykrikoides Margalef has been detected, coinciding with its apparent worldwide expansion in marine coastal waters. In this study, vegetative cells of C. polykrikoides morphotype from the Catalan coast (NW Mediterranean Sea) were detected and isolated, and the DNA from collected cells was sequenced. While in the Mediterranean Sea, detections are scarce and C. polykrikoides is consistently present at low concentrations, we reported exceptional blooms of this species, in which the maximum abundance reached 2 × 104 cells L−1. Partial LSU rDNA region sequences showed that most C. polykrikoides populations from the Catalan coast formed a new differentiated ribotype, but others were included within the ‘Philippines’ ribotype, demonstrating their coexistence in the Mediterranean Sea. Thus, the current biogeographic nomenclature of the ribotypes is likely to be invalid with respect to the available information from populations comprising the ‘Philippines’ ribotype. The phylogeny suggests the existence of cryptic species that should be evaluated for species-level status. Accordingly, the ribotype determination must be carefully evaluated for all detections and bloom events, since accurate characterization of the morphology, ecophysiology and distribution of the ribotypes are not well resolved.  相似文献   

6.
Red tides by the ichthyotoxic dinoflagellate Cochlodinium polykrikoides have caused large scaled mortality of fish and great loss in aquaculture industry in many countries. Detecting and quantifying the abundance of this species are the most critical step in minimizing the loss. The conventional quantitative real-time PCR (qPCR) method has been used for quantifying the abundance of this species. However, when analyzing > 500 samples collected during huge C. polykrikoides red tides in South Sea of Korea in 2014, this conventional method and the previously developed specific primer and probe set for C. polykrikoides did not give reasonable abundances when compared with cell counting data. Thus improved qPCR methods and a new specific primer and probe set reflecting recent discovery of 2 new ribotypes have to be developed. A new species-specific primer and probe set for detecting all 3 ribotypes of C. polykrikoides was developed and provided in this study. Furthermore, because the standard curve between cell abundance and threshold cycle value (Ct) is critical, the efficiencies of 4 different preparation methods used to determine standard curves were comparatively evaluated. The standard curves were determined by using the following 4 different preparations: (1) extraction of DNA from a dense culture of C. polykrikoides followed by serial dilution of the extracted DNA (CDD method), (2) extraction of DNA from each of the serially diluted cultures with different concentrations of C. polykrikoides cultures (CCD method), (3) extraction of DNA from a dense field sample of C. polykrikoides collected from natural seawater and then dilution of the extracted DNA in serial (FDD method), and (4) extraction of DNA from each of the serially diluted field samples having different concentrations of C. polykrikoides (FCD method). These 4 methods yielded different results. The abundances of C. polykrikoides in the samples collected from the coastal waters of South Sea, Korea, in 2014–2015, obtained using the standard curves determined by the CCD and the FCD methods, were the most similar (0.93–1.03 times) and the second closest (1.16–1.33 times) to the actual cell abundances obtained by enumeration of cells. Thus, our results suggest that the CCD method is a more effective tool to quantify the abundance of C. polykrikoides than the conventional method, CDD, and the FDD and FCD methods.  相似文献   

7.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

8.
While the toxic dinoflagellate Cochlodinium polykrikoides is known to form blooms that are maintained for extended periods, the genetic differentiation of these blooms are currently unknown. To assess this, we developed a real-time PCR assay to quantify C. polykrikoides at the intra-specific level, and applied this assay to field samples collected in Korean coastal waters from summer through fall. Assays were successfully developed to target the large-subunit ribosomal RNA region of the three major ribotypes of C. polykrikoides: Philippines, East Asian, and American/Malaysian. Significant linear relationships (r2  0.995) were established between Ct and the log of the copy number for each ribotype qPCR assay. Using these assays, C. polykrikoides blooms in Korean coastal waters were found to be comprised of Philippines and East Asian ribotypes but not the American/Malaysian ribotype. The Philippines ribotype was found to be highly abundant during summer bloom initiation and peak, whereas the East Asian ribotype became the dominant ribotype in the fall. As such, this newly developed qPCR assay can be used to quantify the cryptic ecological succession of sub-populations of C. polykrikoides during blooms that light microscopy and previously developed qPCR assays cannot resolve.  相似文献   

9.
An anomalously large Harmful Algal Bloom (HAB) was observed in the southwest coast of the East/Japan Sea (hereafter the East Sea) during the summer of 2013. During this time period, the presence of Cochlodinium polykrikoides (C. polykrikoides) was detected by the Geostationary Ocean Color Imager (GOCI) and validated by in-situ observations. GOCI observations have been available since 2011, thus allowingto examine various stages of the physical condition of the developing C. polykrikoides bloom, thereby other multi-satellite and buoy measurements obtained between 2011 and 2013. Research results indicate that this HAB is related to four processes: the transport of C. polykrikoides from the south coast of Korea to the HAB area; a relatively high insolation; continuous coastal upwelling; and a favorable Sea Surface Temperature (SST) for C.polykrikoide growth. In examination of the main transport mechanisms, geostrophic current measurements were used to estimate the flow trajectories, showing water from the south coast to the HAB area off the southeast coast of Korea. Result shows that ninety percent of the water from the south coast reached the HAB area in 2013. Furthermore, to examine the insolation mechanism, the Photosynthetically available radiation (PAR) value was derived from the Moderate Resolution Imaging Spectoradiometer (MODIS), showing that PAR values were relatively high in the HAB area during HAB period (47 Ein m−1 day−1). Moreover, Upwelling age (UA) was calculated in order to investigate the strength of coastal upwelling events, which were found to support relatively high UA values during the HAB period. The mean UA value during the HAB period was 1.01, higher than those in 2011 and 2012 which were 0.61 and 0.76, respectively. Finally, SST in the HAB area was also analyzed to examine which conditions were most favorable for HAB growth. Therefore, the results of this study suggest that the four mechanisms can explain the relative contributions of the anomalously HAB development observed off the southeast coast of Korea.  相似文献   

10.
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p  0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms.  相似文献   

11.
The dinoflagellate community present during blooms of the fish killing dinoflagellate Cochlodinium polykrikoides was characterized by DNA melting curve analysis and direct sequencing of the SSU rDNA amplified from environmental sample extracts. PCR amplification of genomic DNA from Gaedo water samples using dinoflagellate-specific SSU rDNA primers yielded 280 clones, which were screened by closed tube PCR-melting curve analysis targeting a region of the SSU rDNA, enabling high throughput analysis. Twenty-eight clones producing distinct melting curve patterns were sequenced, and their phylogenetic information revealed that C. polykrikoides co-occurred with morphologically similar species including Gymnodinium impudicum and Gymnodinium catenatum. Temporal variations of C. polykrikoides and G. impudicum abundances in South Sea were also examined by species-specific real-time TaqMan-based PCR probes developed in this study. C. polykrikoides- and G. impudicum-specific real-time PCR probes were designed targeting the internal transcribed spacer 2 ribosomal DNA region. The probe specificity was confirmed by testing against related dinoflagellates and verified by sequencing PCR products from environmental samples. The real-time PCR assays showed that C. polykrikoides cell densities peaked in August at 16,928 cells mL?1, while G. impudicum was present at low abundances (below 25 cells mL?1). Our amplified rDNA melting curve protocol provides a facile method for the characterization of the dinoflagellate community, and the real-time PCR assay could be an alternative method for rapid and sensitive enumeration of harmful dinoflagellates in the marine environment.  相似文献   

12.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

13.
Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (∼200 μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed.  相似文献   

14.
The Texas coastline stretches 595 km across almost 4° of latitude and is home to diverse coastal vegetation assemblages, yet only a handful of studies have documented the climate and vegetative change of this region through the Holocene. We provide a detailed palynological record of Holocene climate for coastal Texas, based upon three subaqueous sediment cores from Corpus Christi Bay and Trinity Bay. Cluster analysis and correspondence analysis were used to investigate changes in palynological assemblages through time within each core. Common to both bays are nonarboreal taxa including Asteraceae (mainly Ambrosia and Helianthus), Chenopodium, Poaceae, and arboreal taxa such as Carya, Pinus, and Quercus. Our record shows that the coastal environments of central Texas began a transition from herbaceous (nonarboreal) dominated vegetation to arboreal vegetation as early as 8.4 ka within Corpus Christi Bay, and 3.8 ka within Trinity Bay. We note flooding events at 8.2, 5.4, and 3.6 ka in Corpus Christi Bay, and at 1.7, 1.2, and 0.8 ka in Trinity Bay. These events were caused by storms, sea level changes including flooding of relict river terraces, and changes in sediment delivery to the bays. The pollen record also shows evidence for changes in fluvial discharge to Corpus Christi Bay at 4.1 and 2.2 ka, and at 1.8 ka in Trinity Bay. We also see Zea mays in Trinity Bay, indicating local Native American agriculture. We observe no significant changes during the middle Holocene Climatic Optimum, and subtle but not statistically significant evidence of more variable climate oscillations than other records from more interior sites in Texas available for the late Holocene. This indicates that coastal Texas’ climate has operated semi-independently from central Texas regions, and was primarily driven by a coast-wise gradient of precipitation and evapotranspiration.  相似文献   

15.
《农业工程》2014,34(2):92-97
Chub mackerel (Scomber japonicus) are an important pelagic fish species within the China Sea. Annual recruitment of this species is determined primarily by survival in the early life history stages. Minor changes in the physical marine environment can have a significant effect on the growth and survival of eggs and larvae, thereby affecting recruitment of population. To model this interaction, we constructed a bio-physical dynamic model of the early life history of chub mackerel in the East China Sea (ECS). The physical model was based on the unstructured grid Finite Volume Coast and Ocean Model (FVCOM) and simulated the 3-D physical fields. The biological model was based on individual-based models (IBMs) in which the early life stages of chub mackerel were divided into five stages based on age or length. The model was parameterized using functions describing spawning, growth, and survival for chub mackerel in the ECS. Using this coupled physical and biological model, driven by the March–July climatological forcing, we tracked super individuals from spawning grounds to the nursery grounds to evaluate the influence of the physical environment at each of the spawning locations (western, normal, eastern) on the transport and survival of chub mackerel. The model suggests that spawning location has a significant effect on larval transport, although the larvae were generally advected northeastward to enter the Japan/East Sea through the Tsushima/East Strait or southeastward with the Kuroshio Current which then flows along the eastern Japanese coast. Spawning to the west was highly influenced by the Taiwan Warm Current (TWC) during early transport when the larvae were advected northward and then northeastward. The speed of drifting during this period was relatively slow. The model predicted that a large number of eggs and larvae would enter and transit through China’s coastal waters (Changjiang River Estuary, Hangzhou Bay, and the Zhoushan Islands). Under this scenario, the majority of larvae were transported to the northern nursery grounds, 79% to the nursery at Jeju Island and 10% to the nursery at Tsushima Strait. In contrast, only 11% were transported to the southern nursery grounds in the Pacific Ocean and Kyushu. Larvae spawned at the eastern spawning ground were primarily influenced by the Kuroshio Current which transported the larvae southeastward. Kuroshio acts as a barrier, restricting larvae from being advected to the interior of the western Pacific Ocean. Under such circumstances, almost no eggs and larvae were retained in the coastal waters of China. Instead, the larvae were rapidly transported northeastward from the Chinese shelf towards the coast of Japan. The model predicted that a large number of larvae would be transported to the southern nursery grounds in the Pacific Ocean and Kyushu, before entering the Pacific Ocean and Japan Sea. In total, 36% of larvae were transported to the Pacific Ocean nursery, 45% to the northern nursery grounds of Jeju Island and Tsushima Strait, and 27% to the Jeju Island nursery. The three simulations assumed the same number of eggs were spawned (2.17 × 1012) and the survival of larvae at the western, normal, and eastern spawning grounds was 0.0306%, 0.0353%, and 0.0234%, respectively. The average length was 123.7, 126.0, and 123.5 mm, respectively. Our results suggest that larvae spawned in different regions encountered different physical environments and were subject to different transport processes. These differences explain the changes in survival and growth observed between larvae from the different areas. Survival and growth was highest for chub mackerel that were spawned at the normal spawning location and subject to suitable water depths and temperatures during transport.  相似文献   

16.
Morphological observations have confirmed that cysts are produced by dinoflagellates. However, finding a seed bed or unknown cysts in field samples by microscopy is extremely time consuming. Real-time PCR has been used to facilitate the detection of dinoflagellate cysts in sediment. However, DNA from dead vegetative cells remaining on the surface sediment may persist for a long period of time, which can cause false positive DNA detection. In this study, a non-quantitative RNA targeted probe using real-time RT-PCR was developed for detection of viable cysts in sediment. Large-subunit rRNA was used to develop a species-specific RNA targeted probe for the ichthyotoxic dinoflagellate Cochlodinium polykrikoides. The sediment samples were sieved and incubated at 30 °C for 3 h prior to RNA extraction to remove RNA from dead cells remaining in the sediment. Nested-PCR was conducted to maximize assay sensitivity. A field survey to determine the distribution of cysts at 155 sampling stations in the western and southern part of the Korean peninsula showed that C. polykrikoides cysts were detected at five sampling stations.  相似文献   

17.
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters.  相似文献   

18.
The sensitivity of bacteria to the marine neurotoxins, brevetoxins, produced by the dinoflagellate Karenia brevis and raphidophytes Chattonella spp. remains an open question. We investigated the bacteriocidal effects of brevetoxin (PbTx-2) on the abundance and community composition of natural microbial communities by adding it to microbes from three coastal marine locations that have varying degrees of historical brevetoxin exposure: (1) Great Bay, New Jersey, (2) Rehoboth Bay, Delaware and (3) Sarasota Bay, Florida. The populations with limited or no documented exposure were more susceptible to the effects of PbTx-2 than the Gulf of Mexico populations which are frequently exposed to brevetoxins. The community with no prior documented exposure to brevetoxins showed significant (p = 0.03) changes in bacterial abundance occurring with additions greater than 2.5 μg PbTx-2 L−1. Brevetoxin concentrations during K. brevis blooms range from ∼2.5 to nearly 100 μg L−1 with typical concentrations of ∼10–30 μg L−1. In contrast to the unexposed populations, there was no significant decrease in bacterial cell number for the microbial community that was frequently exposed to brevetoxins, which implies variable sensitivity in natural communities. The diversity in the bacterial communities that were sensitive to PbTx-2 declined upon exposure. This suggests that the PbTx-2 was selecting for or against specific species. Mortality was much higher in the 200 μg PbTx-2 L−1 treatment after 48 h and >37% of the species disappeared in the bacterial communities with no documented exposure. These results suggest that toxic red tides may play a role in structuring bacterial communities.  相似文献   

19.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

20.
The 2011 Great East Japan Earthquake and the subsequent huge tsunami greatly affected both human activity and the coastal marine ecosystem along the Pacific coast of Japan. The tsunami also reached Funka Bay in northern Japan and caused serious damage to the scallop cultures there, and this tsunami was believed to have affected the coastal environments in the bay. Therefore, we investigated the changes in the spatial abundance and distribution of the toxic dinoflagellates Alexandrium tamarense cysts before the tsunami (August 2010) and after the tsunami (May 2011, August 2011, May 2012 and August 2012) in the bay. Further, monthly sampling was conducted after the tsunami to identify seasonal changes of Alexandrium catenella/tamarense cysts and vegetative cells. Significant increases were observed in the populations of A. catenella/tamarense cysts, comparing the abundances before the tsunami (in August 2010; 70 ± 61 cysts g−1 wet sediment) to those just after it (in May 2011; 108 ± 84 cysts g−1 wet sediment), and both A. tamarense bloom (a maximum density was 1.3 × 103 cells L−1) and PSP (Paralytic Shellfish Poisoning) toxin contamination of scallops (9.4 mouse unit g−1 was recorded) occurred in the bay. Seasonal sampling also revealed that the encystment of A. tamarense and the supply of the cysts to bottom sediments did not occur in the bay from September to April. These results strongly suggested that the mixing of the bottom sediments by the tsunami caused the accumulation of the toxic A. tamarense cysts in the surface of bottom sediment through the process of redeposition in Funka Bay. Moreover, this cyst deposition may have contributed to the toxic bloom formation as a seed population in the spring of 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号