首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monosize and non-porous poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) (poly(HEMA-co-MMA)), microspheres were prepared by dispersion polymerisation of HEMA and MMA in an ethanol–water medium in the presence of an initiator (α,α′-azobisisobutyronitrile, AIBN). An affinity dye, i.e. Congo Red (CR) was attached covalently and then Fe3+ ions were incorporated. The poly(HEMA-co-MMA)-CR attached and poly(HEMA-co-MMA)-CR-Fe3+ incorporated microspheres were used in the immobilisation of glucose oxidase (GOD) via adsorption. The adsorption capacities of these microspheres were determined by varying the concentration of GOD in the adsorption medium. GOD adsorption capacities of the Fe3+ incorporated microspheres (165 mg g−1) was greater than that of the dye-attached microspheres (126 mg g−1). The non-specific adsorption of the GOD on the poly(HEMA-co-MMA) microspheres was negligible. The Km values for both immobilised poly(HEMA-co-MMA)-CR-GOD (7.2) and poly(HEMA-co-MMA)-CR-Fe3+-GOD (6.8) were higher than that of the free enzyme (6.6 mM). Optimum reaction pH was 5.0 for free and 7.0 for both immobilised preparations. Optimum reaction temperature of the adsorbed enzymes was 10 °C higher than that of the free enzyme and was significantly broader. After 10 successive uses the retained activity of the adsorbed enzyme was 93%. It was observed that enzyme could be repeatedly adsorbed and desorbed on the CR attached poly(HEMA-co-MMA) microspheres without significant loss in adsorption capacity or enzyme activity.  相似文献   

2.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

3.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

4.
Protocorm cultures of Dendrobium candidum were established in balloon type bubble bioreactors using Murashige and Skoog (MS) medium with 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5% (w/v) sucrose, 5:25 mM NH4:NO3 and 1% (v/v) banana homogenate for the production of biomass and bioactive compounds. In 3 l bioreactor containing 2 l medium, a maximum protocorm biomass (21.0 g l−1 dry biomass) and also optimum quantities of total polysaccharides (389.3 mg g−1 DW), coumarins (18.0 mg g−1 DW), polyphenolics (11.9 mg g−1 DW), and flavonoids (4.5 mg g−1 DW) were achieved after 7 weeks of culture. Based on these studies, 5 and 10 l bioreactor cultures were established to harvest 80 g and 160 g dry biomass. In 10 l bioreactors, the protocorms grown were accumulated with optimal levels of polysaccharides (424.1 mg g−1 DW), coumarins (15.8 mg g−1 DW), polyphenols (9.03 mg g−1 DW) and flavonoids (4.7 mg g−1 DW). The bioreactor technology developed here will be useful for the production of important bioactive compounds from D. candidum.  相似文献   

5.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

6.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

7.
《Process Biochemistry》2007,42(4):686-692
Pseudomonas putida 33 wild strain, subjected to gamma ray mutagenesis and designated as P. putida 300-B mutant was used as microbial rhamnolipid-producer by using distant carbon sources (viz. hydrocarbons, waste frying oils ‘WFOs’, vegetable oil refinery wastes and molasses) in the minimal media under shake flask conditions. The behavior of glucose as co-substrate and growth initiator was examined. The 300-B mutant strain showed its ability to grow on all the substrates tested and produced rhamnolipid surfactants to different extents however; soybean and corn WFOs were observed to be preferred carbon sources followed by kerosene and paraffin oils, respectively. The best cell biomass (3.5 g l−1) and rhamnolipids yield (4.1 g l−1) were obtained with soybean WFO as carbon source and glucose as growth initiator under fed-batch cultivation showing an optimum specific growth rate (μ) of 0.272 h−1, specific product yield (qp) of 0.318 g g−1 h and volumetric productivity (PV) of 0.024 g l−1 h. The critical micelle concentration of its culture supernatant was observed to be 91 mg rhamnolipids l−1 and surface tension as 31.2 mN m−1.  相似文献   

8.
The solubilization and acidification of waste activated sludge (WAS) were apparently enhanced by external rhamnolipid (RL) addition. The maximum solute carbohydrate concentrations increased linearly from 48 ± 5 mg COD L−1 in the un-pretreated WAS (blank) to 566 ± 19 mg COD L−1, and protein increased from 1050 ± 8 to 3493 ± 16 mg COD L−1 at RL dosage of 0.10 g g−1 TSS. The highest VFAs concentration peaked at 3840 mg COD L−1 at RL dosage of 0.04 g g−1 TSS, which was 4.24-fold higher than the blank test. RL was generated in situ during WAS fermentation when external RL was added. It was detected that RL concentration was increased from initial 880 ± 92 mg L−1 to 1312 ± 7 mg L−1 at the end of 96 h with RL dosage of 0.04 g g−1 TSS, which was increased to 1.49-fold. Meanwhile, methane production was notably reduced to a quite low level of 2.0 mL CH4 g−1 VSS, showing effective inhibition of methanogens by RL (58.8 mL CH4 g−1 VSS in the blank). In addition, the activity of hydrolytic enzymes (protease and α-glucosidase) was enhanced accordingly. VFAs accumulation and RL generation in situ demonstrated that the additional RL substantially performed enhanced biological effects for waste activated sludge fermentation.  相似文献   

9.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

10.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

11.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

12.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

13.
Studies were conducted with crossbred weanling pigs to determine the level of phosphorus needed to be fed when a maize–soyabean meal–whey diet was supplemented with exogenous phytase (Natuphos™). In Trial 1, phytase was added at 1200 phytase units (PTU) kg−1 as phosphorus decreased. The control diet in Phase I (0–14 days) contained 7.3 g kg−1 phosphorus and in Phase II (14–28 days) contained 6.5 g kg−1 phosphorus. Dietary phosphorus was calculated to decrease by 0.8, 1.6 or 2.4 g kg−1 when phytase was supplemented. Chromic oxide was added for estimation of apparent absorption of phosphorus. Performance was optimum when 5.7 and 4.8 g kg−1 phosphorus (analysed levels) were fed with 1200 PTU kg−1 phytase in Phases I and II, respectively. The lowest dietary phosphorus levels did not reduce performance for the overall 28-day period. Apparent phosphorus digestibility was increased by phytase in Phase I when 5.7 g kg−1 phosphorus was fed compared to the control diet and in Phase II when 6.0 g kg−1 phosphorus was fed with phytase. Faecal phosphorus excretion decreased in both phases as dietary phosphorus decreased. Faecal phosphorus excretion was minimized at the lowest phosphorus level with no decrease in performance. The estimated requirement for dietary phosphorus, as determined by the NLIN procedure, is 5.0 g kg−1 in Phase I and 4.3 g kg−1 in Phase II when 1200 PTU kg−1 is used. In Trial 2, phytase was supplemented at 500 PTU kg−1 when phosphorus was decreased in the diet. The control diet contained 6.6 and 6.0 g kg−1 phosphorus in Phases I and II, respectively, and phosphorus was calculated to decrease by 0.5, 1.0, 1.5, or 2.0 g kg−1 when phytase was added. Daily gain decreased when 5.0 g kg−1 phosphorus was fed in Phase I and when 4.6 or 4.2 g kg−1 (analysed levels) phosphorus was fed in Phase II with 500 PTU kg−1. Faecal phosphorus excretion decreased as dietary phosphorus decreased, but there were no treatment effects on apparent phosphorus digestibility. The dietary phosphorus requirement was estimated to be 5.7 and 5.0 g kg−1 in Phases I and II, respectively, when phytase is fed at 500 PTU kg−1. At the present recommendation of 500 PTU kg−1 in starter feed, phosphorus can be decreased by 0.10 g kg−1. However, higher levels of phytase are needed to actually increase apparent phosphorus digestibility.  相似文献   

14.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

15.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

16.
The study present evaluated the levels of mercury (Hg) and methylmercury (MeHg) in hair samples of people from Barreiras community, riverside inhabitants of the Tapajós River (Pará, Brazil), an area impacted by clandestine gold mining, as well as we analyzed the levels of Hg and Se (selenium) in nine fish species (carnivores and non-carnivorous) from the Tapajós River, which stand out as the main species consumed by riverside inhabitants, to evaluate a relationship between frequency of fish consumption and Hg concentration, and also to evaluate possible mechanisms of fish protection (or non-protection) to Hg exposure by Se. Furthermore we analyze the water quality to evaluate the environmental trophic state, fact responsible by creating conditions that can potentiate the effects of toxic mercury. Concentrations of Hg and MeHg were analyzed in hair samples of 141 volunteers in different age band. Of those, 84.40% of samples present values above the threshold for biological tolerance, which is 6.00 μg g−1 of total Hg in hair. Total Hg, in men there was a variation of 2.07–24.93 μg g−1, while for women the variation was 4.84–27.02 μg g−1. Consequently, the level of MeHg in men presented a variation of 1.49–19.57 μg g−1, with an average of 11.68 μg g−1, while with women the variation was from 3.73 to 22.35 μg g−1, with an average of 10.38 μg g−1. In fish species, Hg concentrations in carnivorous species had an average of 0.66 μg g−1, higher than that permitted by current legislation, ranging from 0.30 to 0.98 μg g−1, while the non-carnivorous species have values below the recommended by the legislation averaging 0.09 μg g−1, ranging between 0.02 and 0.44 μg g−1. For Se in fish, show that among carnivores, the contents of Se ranged between 0.18 and 0.54 μg g−1 with a mean of 0.34 μg g−1, while for non-carnivores these values were of the order of 0.16–0.56 μg g−1, with an average of 0.32 μg g−1. In surface water quality variables at the sampling points all showed values in accordance with the range established by current legislation. In this regard, the results provided by this study, while not conclusive, are strong indicators that despite not having been shown the relationship between the concentration of mercury in hair and feeding habits along the Tapajós River basin communities showed that a plausible correlation exists between levels of mercury and selenium in fish. This fact may serve as a subsidy to research human health, because in the Amazon, there is still a lot to examine with regards to the full understanding of the Se cycle.  相似文献   

17.
In the current work nanoparticles (NPs) of α-amylase were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on polyethylene (PE) films, or polycarbonate (PC) plates, or on microscope glass slides. The α-amylase NPs coated on the solid surfaces have been characterized by ESEM, TEM, FTIR, XPS and AFM. The substrates immobilized with α-amylase were used for hydrolyzing soluble potato starch to maltose. The amount of enzyme introduced in the substrates, leaching properties, and the catalytic activity of the immobilized enzyme were compared. The catalytic activity of the amylase deposited on the three solid surfaces was compared to that of the same amount of free enzyme at different pHs and temperatures. α-Amylase coated on PE showed the best catalytic activity in all the examined parameters when compared to native amylase, especially at high temperatures. When immobilized on glass, α-amylase showed better activity than the native enzyme over all pH and temperature values studied. However, the immobilization on PC did not improve the enzyme activity at any pH and any temperature compared to the free amylase. The kinetic parameters, Km and Vmax were also calculated. The amylase coated PE showed the most favorable kinetic parameters (Km = 5 g L−1 and Vmax = 5E−07 mol mL−1 min−1). In contrast, the anchored enzyme-PC exhibited unfavorable kinetic parameters (Km = 16 g L−1, Vmax = 4.2E−07 mol mL−1 min−1). The corresponding values for amylase-glass were Km = 7 g L−1, Vmax = 1.8E−07 mol mL−1 min−1, relative to those obtained for the free enzyme (Km = 6.6 g L−1, Vmax = 3.3E−07 mol mL−1 min−1).  相似文献   

18.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

19.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

20.
Functional indicators are being increasingly used to assess waterway health but their responses to pressure in non-wadeable rivers have not been widely documented or applied in modern survey designs that provide unbiased estimates of extent. This study tests the response of river metabolism and loss in cotton strip tensile strength across a land use pressure gradient in non-wadeable rivers of northern New Zealand, and reports extent estimates for river metabolism and decomposition rates. Following adjustment for probability of selection, ecosystem respiration (ER) and gross primary production (GPP) for the target population of order 5–7 non-wadeable rivers averaged −7.3 and 4.8 g O2 m−2 d−1, respectively, with average P/R < 1 indicating dominance by heterotrophic processes. Ecosystem respiration was <−3.3 g O2 m−2 d−1 for 75% of non-wadeable river length with around 20% of length between −10 and −20 g O2 m−2 d−1. Cumulative distribution functions of cotton strength loss estimates indicated a more-or-less linear relationship with river km reflecting an even spread of decay rates (range in k 0.0007–0.2875 d−1) across non-wadeable rivers regionally. A non-linear relationship with land cover was detected for GPP which was typically <5 g O2 m−2 d−1 where natural vegetation cover was below 20% and greater than 80% of upstream catchment area. For cotton strength loss, the relationship with land cover was wedge-shaped such that sites with >60% natural cover had low decay rates (<0.02 d−1) with variability below this increasing as natural cover declined. Using published criteria for assessing waterway health based on ER and GPP, 232–298 km (20–29%) of non-wadeable river length was considered to have severely impaired ecosystem functioning, and 436–530 km (42–50%) had no evidence of impact on river metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号