首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (Ci,i). In the first experiment, MCYST production was studied under increased Ci,i deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the Ci,i status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative Ci,i deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased Ci,i deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased Ci,i deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-Ci,i conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.  相似文献   

2.
Although there is now some agreement with the view that the supply of photochemical energy may influence photosynthetic rate (P) at high CO2 pressures, it is less clear whether this limitation extends to P at low CO2. This was investigated by measuring P per area as a function of the intercellular CO2 concentration (Ci) at different levels of photochemical energy supply. Changes in the latter were obtained experimentally by varying the level of irradiance to normal (Fe-sufficient) leaves of Beta vulgaris L. cv F58-554H1, and by varying photosynthetic electron transport capacity using leaves from Fe-deficient and Fe-sufficient plants. P and Ci were determined for attached sugar beet leaves using open flow gas exchange. The results suggest that P/area was colimited by the supply of photochemical energy at very low as well as high values of Ci. Using the procedure developed by Perchorowicz et al. (Plant Physiol 1982 69:1165-1168), we investigated the effect of irradiance on ribulose bisphosphate carboxylase (RuBPCase) activation. The ratio of initial extractable activity to total inducible RuBPCase activity increased from 0.25 to 0.90 as leaf irradiance increased from 100 to 1500 microeinsteins photosynthetically active radiation per square meter per second. These data suggest that colimitation by photochemical energy supply at low Ci may be mediated via effects on RuBPCase activation.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.  相似文献   

4.
Cell quotas of microcystin (QMCYST; femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between QMCYST and specific growth rate (μ), from which we propose a generalized model that enables QMCYST at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts QMCYST from μ, μmax (maximum specific growth rate), QMCYSTmax (maximum cell quota), and QMCYSTmin (minimum cell quota). Under the conditions examined in this study, we predict a QMCYSTmax of 0.129 fmol cell−1 at μmax and a QMCYSTmin of 0.050 fmol cell−1 at μ = 0. Net MCYST production rate (RMCYST) asymptotes to zero at μ = 0 and reaches a maximum of 0.155 fmol cell−1 day−1 at μmax. MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with μ, whereas the MCYST/protein ratio reached a maximum at intermediate μ. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with μ, leading to an increase in intracellular MCYST concentration at high μ. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components.  相似文献   

5.
Miscanthus is one of the most promising bioenergy crops with high photosynthetic nitrogen-use efficiency (PNUE). It is unclear how nitrogen (N) influences the photosynthesis in Miscanthus. Among three Miscanthus genotypes, the net photosynthetic rate (P N) under the different light intensity and CO2 concentration was measured at three levels of N: 0, 100, and 200 kg ha?1. The concentrations of chlorophyll, soluble protein, phosphoenolpyruvate carboxylase (PEPC), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, leaf anatomy and carbon isotope discrimination (Δ) in the leaf were analyzed to probe the response of photosynthesis in Miscanthus genotypes to N levels. P N in all genotypes rose significantly as N application increased. The initial slope of response curves of P N to C i was promoted by N application in all genotypes. Both stomatal conductance and C i were increased with increased N supply, indicating that stomatal factors played an important role in increasing P N. At a given C i, P N in all genotypes was enhanced by N, implying that nonstomatal factors might also play an important role in increasing P N. Miscanthus markedly regulated N investment into PEPC rather than the Rubisco large subunit under higher N conditions. Bundle sheath leakiness of CO2 was constant at about 0.35 for all N levels. Therefore, N enhanced the photosynthesis of Miscanthus mainly by increasing stomatal conductance and PEPC concentration.  相似文献   

6.
The acid tolerance response (ATR) of chemostat cultures of Lactococcus lactis subsp. cremoris NCDO 712 was dependent on the dilution rate and on the extracellular pH (pHo). A decrease in either the dilution rate or the pHo led to a decrease in the cytoplasmic pH (pHi) of the cells, and similar levels of acid tolerance were observed at any specific pHi irrespective of whether the pHi resulted from manipulation of the growth rate, manipulation of the pHo, or both. Acid tolerance was also induced by sudden additions of acid to chemostat cultures growing at a pHo of 7.0, and this induction was completely inhibited by chloramphenicol. The end products of glucose fermentation depended on the growth rate and the environmental pHo of the cultures, but neither the spectrum of end products nor the total rate of acid production correlated with a specific pHi. The rate of ATP formation was not correlated with pHi, but a good correlation between the cellular level of H+-ATPase and pHi was observed. Moreover, an inverse correlation between the cytoplasmic levels of ATP and pHi was established. Each pHi below 6.6 was characterized by unique levels of ATR, H+-ATPase, and ATP. High levels of H+-ATPase also coincided with high levels of acid tolerance of cells in batch cultures induced with sublethal levels of acid. We concluded that H+-ATPase is one of the ATR proteins induced by acid pHi through growth at an acid pHo or a slow growth rate.  相似文献   

7.
Gas liquid chromatography, chemical analyses, and infrared and13C-NMR spectroscopies indicated that phycocolloids extracted fromAgardhiella subulata had a dominant ι-carrageenan feature with less deviant ι-carrageenan and υ-carrageenan. The presence of methylated galactose and a small contamination by xylose were registered. Unattached plants were cultivated for 4 weeks in tanks receiving seawater enriched with 53.5 µM nitrate and 0 to 20 µM phosphate (Pi) week?1. The growth was phosphorus (P)-limited up to a tissue P content of 0.14 ± 0.03% dry weight. Maximal specific growth rate and carrageenan content were observed with enrichments of 6 µM Pi and 3 µM Pi, respectively. Hence carrageenan production was promoted in the range of 3–6 µM Pi. Further Pi enrichment was useless. This phenomenon, observed with P nutrition, is comparable to the ‘Neish effect’ in nitrogen nutrition studies.  相似文献   

8.
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (α), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and α. An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (δL), root mass fraction (Rf), Pmax, and α remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. δL increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N.  相似文献   

9.
Geitlerinema amphibium (BA-13), mat-forming cyanobacterium from the southern Baltic Sea, was grown at three irradiances [5, 65, and 125 μmol(photon) m?2 s?1] and three temperatures (15, 22.5, and 30°C). To determine the effect of the investigated factors and their interaction on culture concentration, pigment content, and photosynthetic parameters of cyanobacterium, factorial experiments and two-way analysis of variance (ANOVA) were carried out. Both chlorophyll (Chl) a and phycobilins (PB) were influenced by the irradiance and temperature, but stronger effect was noted in the case of the former one. Chl a and PB concentration per 100 μm of filament dropped above 4-fold with the increasing irradiance. The ratios between individual carotenoids [β-carotene, zeaxanthin, and myxoxanthophyll (Myx)] and Chl a increased significantly with an increase in the irradiance. The greatest fluctuations were observed in the ratio of Myx to Chl a (above 10-fold). Thus, Myx was suggested as the main photoprotective carotenoid in G. amphibium. Based on photosynthetic light response (PI) curves, two mechanisms of photoacclimation in G. amphibium were recognized: a change of photosynthetic units (PSU) number and a change of PSU size. These two mechanisms constituted the base of significant changes in photosynthetic rate and its parameters, such as the compensation point (P C), the initial slope of photosynthetic curve (α), saturation irradiance (E K), maximal photosynthetic rate (P max), and dark respiration rate (R D). The greatest changes were observed in P C values (about 15-fold within the range of the factors tested). Studied parameters showed a wide range of changes, which might indicate G. amphibium ability to acclimatize well to irradiance and temperature, and indirectly might explain the successful growth of cyanobacterium in dynamically changing environmental conditions.  相似文献   

10.
In this study, we examined steady-state and dynamic photosynthetic performance and leaf nitrogen (N) partitioning in the typical shade-demanding herb Panax notoginseng grown along a light gradient. Gas exchange on a leaf area basis was significantly reduced under low irradiance, with gas exchange on a leaf mass basis reaching a maximum value and then decreasing along the light gradient. Specific leaf area significantly increased with decreasing irradiance levels (P < 0.001), whereas carboxylation efficiency was decreased (P < 0.001). In addition, decreasing growth irradiance levels led to declines in maximum carboxylation rate (V cmax) and maximum electron transport rate (J max), although V cmax/mass and J max/mass were relatively less affected than V cmax/area and J max/area. Slow photosynthetic response to simulated sunflecks was observed under low levels of growth irradiance, with stomatal limitations only detected in leaves grown under low-light conditions. Chlorophyll content increased significantly with decreasing irradiance levels. N content on a leaf mass basis apparently increased, while N content on a leaf area basis markedly decreased. The fraction of leaf N allocated to light-harvesting components increased significantly with decreasing growth irradiance levels, whereas the fraction allocated to carboxylation and bioenergetics was significantly reduced. As an adaptation strategy to growth irradiance, we conclude that adjustments in specific leaf area may be more important than changes in leaf physiology and biochemistry in typical shade-demanding species such as P. notoginseng.  相似文献   

11.
The effect of phosphate (Pi) supply on growth rate and tissue phosphorus content of juvenile Macrocystis pyrifera (L.) C. Ag. sporophytes was examined. Sporophytes were batch cultured in aquaria with flowing recirculated seawater enriched by 30 μM nitrate. Each aquarium was supplemented with a different seawater Pi concentration, 0, 0.3, 1, 2, 3, and 6 μM. Sporophyte mean specific growth rates declined with time in all cultures presumably due to the normal developmental decrease in the proportion of meristematic tissue of each plant. Growth rate declines were more pronounced in cultures that were nutrient limited. Sporophyte growth was P-limited after two-week exposure to Pi less than 1 μM, corresponding to a tissue P concentration of less than 0.20% dry weight. Plants cultured at 6 μM Pi contained tissue P levels of 0.53% dry weight after three weeks. Luxury consumption and storage of P occurred.  相似文献   

12.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

13.
In view of the importance of Pi in the control of cell metabolism, it was of interest to study the mechanism and regulation of Pi uptake by Acer pseudoplatanus cells grown as cell suspensions. At low external Pi concentrations up to 10 mm, sycamore cells incorporate phosphate against a concentration gradient, by a process which is energy dependent. Under these conditions the intracellular Pi concentration is maintained constant (2–3 mm). On the contrary at high external Pi concentrations, higher than that which counterpoises the cytoplasmic Pi concentration (approximately 10 mm), Pi enters the cell by slow diffusion and the intracellular Pi concentration increases continuously as the extracellular Pi concentration increases from 15 to 50 mm. When sycamore cells are transferred to a phosphate-deficient medium, growth slows down considerably and ceases after 4–5 days. During this time, intracellular Pi concentration falls from 3 to 0.1 mm and phosphate esters from 8 to 2 mm. Phosphate starvation stimulates the uptake indicating that phosphate uptake depends on the intracellular phosphate and/or cytoplasmic ester-P pool. Pi uptake by Pi-starved cells is strongly dependent on the pH of the medium.  相似文献   

14.
We determined the effects of two nitrogen sources (ammonium and nitrate) and two irradiance levels (50 and 200 μmol photons m?2 s?1) on the growth rate, cell size, proximate composition, pigment content, and photosynthesis of the unicellular red alga, Porphyridium cruentum. Irradiance significantly affects growth rate, as well as carbohydrate, protein, and phycoerythrin content. Nitrogen form significantly affects cell size, total dry weight, organic dry weight, ash content, carotene content, phycocyanin content, allophycocyanin content, maximum relative electron transport rate (rETRm), and photosynthetic efficiency (α). However, the irradiance and nitrogen source had significantly interaction with the content of lipids and chlorophyll a content, relative electron transport rate (rETR), and irradiance of saturation (Ik). These findings demonstrate that irradiance and nitrogen source influence the metabolism of P. cruentum and that the combination of these two variables induces the production of chemical products for biotechnological, aquaculture, and nutraceutical industry.  相似文献   

15.
The morphological and physiological adaptation of Lactuca sativaL. (‘Vegas’) to different irradiance levels andrates of nitrogen supply was analysed in such a way that effectsof irradiance were clearly distinguished from the effects ofnitrogen. Lettuce was grown in a glasshouse in aerated nutrientsolutions containing all necessary nutrients except nitrogen.Nitrogen was supplied in excess and at limiting rates in relationto plant growth to provide steady state nutrition. Shading theplants created the low irradiance level. The effects of nitrogensupply and irradiance on growth showed a marked interaction.Dry matter production decreased strongly with decreasing nitrogensupply at high irradiance, but decreased only slightly at lowirradiance. Nitrogen had no effect on radiation use efficiencyexcept for the lowest nitrogen treatment at high irradiance.The effect of nitrogen on growth was mainly mediated by itseffect on leaf area development and hence on light interception.Decreases in leaf area were due to decreases in specific leafarea and dry matter partitioning towards the leaves, while thedecrease in specific leaf area was the result of an increasein leaf dry matter percentage at low nitrogen supply. Dry matterand nitrogen partitioning, and nitrate concentration were closelyrelated to plant nitrogen concentration. Irradiance did notaffect these relationships. Irradiance influenced partitioningonly indirectly by affecting plant nitrogen concentration. Thedemand for organic nitrogen per unit leaf area was lower atlower irradiance. Organic nitrogen per unit leaf area appearedto be adjusted to the irradiance level, independently of thenitrogen supply, suggesting priority of nitrogen usage in photosynthesis.Copyright 2000 Annals of Botany Company Lactuca sativa L., lettuce, growth, irradiance, leaf area, nitrogen, radiation use efficiency, partitioning  相似文献   

16.
《Aquatic Botany》2001,69(2-4):109-126
Four populations of Phragmites australis collected from geographically distinct areas in Europe were propagated in outdoor experimental plots at four sites with dissimilar climate (Denmark, The Netherlands, Spain and Czech Republic). During the second growing season the photosynthetic characteristics of Phragmites leaves were evaluated under controlled conditions for each site, each population, and their interaction, and related to tissue nutrient and pigment content. The light-saturated rate of photosynthesis (Pmax), dark respiration rate (Rd), light compensation point (Ic), and apparent quantum efficiency (φi) were significantly affected by growth site, whereas differences between populations were less pronounced. Plants grown in the more northerly climates appeared to be more photosynthetically limited through lower Pmax values and lower φi levels, reflecting phenotypic acclimation to the lower summer temperatures and irradiance levels at the northern growth sites. The higher Pmax levels in the southern climate were correlated with higher nutrient levels in the tissue of leaves. The study shows that the four genetically distinct populations of P. australis exhibited high phenotypic plasticity in photosynthetic response to climatic change. The degree of photosynthetic plasticity within P. australis genotypes is large, and generally larger than the genetically determined differences between European populations. The results are discussed in relation to the prospected global climate change.  相似文献   

17.
The effects of temperature and initial inoculum density of Meloidogyne incognita on soybean growth and nematode reproduction were investigated in greenhouse temperature tanks and in controlled-growth chambers. The interactions of initial inoculum density (Pi) and soil temperature in effects on shoot growth were adequately described by multiple-regression models. At the highest temperatures (30 or 32/28 C), moderate to high inoculum killed many plants. A Pi of 27,000 eggs/15-cm-diam pot retarded shoot growth at 26 C. Only the greatest Pi (81,000 eggs/15-cm pot) suppressed shoot growth at 18, 22, or 20/16 C. Inoculation with 3,000 or 9,000 eggs/plant resulted in heavier root systems at all temperatures except 30 C. At that temperature, 9,000 eggs suppressed root growth. At 18 and 26 C, a Pi of 81,000 eggs was required to retard root growth. Nematode reproduction was related directly to temperature and Pi except at a density of 81,000 eggs/15-cm pot.  相似文献   

18.
Using radioactively labelled amino acids to investigate repair of photoinactivated photosystem II (PS II) gives only a relative rate of repair, while using chlorophyll fluorescence parameters yields a repair rate coefficient for an undefined, variable location within the leaf tissue. Here, we report on a whole-tissue determination of the rate coefficient of photoinactivation k i , and that of repair k r in cotton leaf discs. The method assays functional PS II via a P700 kinetics area associated with PS I, as induced by a single-turnover, saturating flash superimposed on continuous background far-red light. The P700 kinetics area, directly proportional to the oxygen yield per single-turnover, saturating flash, was used to obtain both k i and k r . The value of k i , directly proportional to irradiance, was slightly higher when CO2 diffusion into the abaxial surface (richer in stomata) was blocked by contact with water. The value of k r , sizable in darkness, changed in the light depending on which surface was blocked by contact with water. When the abaxial surface was blocked, k r first peaked at moderate irradiance and then decreased at high irradiance. When the adaxial surface was blocked, k r first increased at low irradiance, then plateaued, before increasing markedly at high irradiance. At the highest irradiance, k r differed by an order of magnitude between the two orientations, attributable to different extents of oxidative stress affecting repair (Nishiyama et al., EMBO J 20: 5587–5594, 2001). The method is a whole-tissue, convenient determination of the rate coefficient of photoinactivation k i and that of repair k r .  相似文献   

19.
1. The effects of instantaneous irradiance and short‐term light history on primary production were determined for samples from a subtropical water reservoir dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii. 14C‐bicarbonate uptake incubations were conducted on water samples from the reservoir, for irradiance (photosynthetically active radiation) ranging from 0 to 1654 μmol quanta m−2 s−1. Prior to the 14C incubations, cells were pre‐treated at irradiance levels ranging from 0 to 1006 μmol quanta m−2 s−1. 2. The average irradiance experienced by cells during the 2–2.5 h pre‐treatment incubations affected the productivity–irradiance (P–I) parameters: exposure to high light in pre‐treatment conditions caused a substantial decrease in maximum rate of primary production Pmax and the photoinhibition parameter β when compared to cells pre‐treated in the dark. 3. While the data collected in this study were not sufficient to develop a full dynamic model of C. raciborskii productivity, Pmax and β were modelled as a function of pre‐treatment irradiance, and these models were applied to predict the rate of primary production as a function of both instantaneous and historical irradiance. The results indicated that while cells with a history of exposure to high irradiance will be the most productive in high irradiance, production rates will be highest overall for dark‐acclimated cells in moderate irradiance. 4. Our results may explain why optically‐deep mixing favours C. raciborskii. If the mixing depth zm exceeds the euphotic depth zeu, cells will be dark‐acclimated, which will increase their rate of production when they are circulated through the euphotic zone. These results also predict that production rates will be higher during morning hours than for the same irradiance in the afternoon, which is consistent with other phytoplankton studies. 5. Since the rate of production of C. raciborskii‐dominated systems cannot be described by a single P–I curve, accurate estimates of production rates will require measurements over the daily light cycle.  相似文献   

20.
In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号