首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Searching for improved indolesulfonamides with higher polarities, 45 new analogues with modifications on the sulfonamide nitrogen, the methoxyaniline, and/or the indole 3-position were synthesised. They show submicromolar to nanomolar antiproliferative IC50 values against four human tumour cell lines and they are not P-glycoprotein substrates as their potencies against HeLa cells did not improve upon cotreatment with multidrug resistance (MDR) inhibitors. The compounds inhibit tubulin polymerisation in vitro and in cells, thus causing a mitotic arrest followed by apoptosis as shown by cell cycle distribution studies. Molecular modelling studies indicate binding at the colchicine site. Methylated sulfonamides were more potent than those with large and polar substitutions. Amide, formyl, or nitrile groups at the indole 3-position provided drug-like properties for reduced toxicity, with Polar Surface Areas (PSA) above a desirable 75 Å2. Nitriles 15 and 16 are potent polar analogues and represent an interesting class of new antimitotics.  相似文献   

2.
A series of cis-restricted 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazole analogues of combretastatin A-4 were synthesized and investigated for inhibition of cell proliferation against three cancer cell lines, HT-29, MCF-7, and AGS, and a normal mouse fibroblastic cell line, NIH-3T3, using an MTT assay. The biological study showed that 2-(methylthio) substituted compounds showed little cytotoxic activity against the four cell lines. In contrast, the presence of the 2-(benzylthio) group on the thiazole ring resulted in a significant improvement in cytotoxic activity relative to the 2-(methylthio) substituted derivatives. Furthermore, the inhibition of tubulin polymerization by some potent compounds was evaluated. All the compounds studied were moderate tubulin polymerization inhibitors. The flow cytometry analysis confirmed that the synthesized compounds led to cell cycle arrest at the G2/M phase. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model.  相似文献   

3.
Previously synthesized 2-(benzo[b]thiophene-3′-yl)-6,8,8-triethyldesmosdumotin B (1, TEDB-TB) and 2-(naphth-1′-yl)-6,8,8-triethyldesmosdumotin B (2) showed potent activity against multiple human tumor cell lines, including a multidrug-resistant (MDR) subline, by targeting spindle formation and/or the microtubule network. Consequently, ester analogues of hydroxylated naphthyl substituted TEBDs (35) were prepared and evaluated for their effects on tumor cell proliferation and on tubulin assembly. Among all new compounds, compound 6, a 4′-acetoxynaphthalen-1′-yl derivative, displayed the most potent antiproliferative activity (IC50 0.2–5.7 μM). Selected analogues were confirmed to be tubulin assembly inhibitors in cell-free and cell-based assays using MDR tumor cells. The new analogues partially inhibited colchicine binding to tubulin, suggesting their binding mode would be different from that of colchicine. This observation was supported by computational docking model analyses. Thus, the newly synthesized triethylated chromones with esterified naphthalene groups have good potential for development as a new class of mitotic inhibitors that target tubulin.  相似文献   

4.
A series of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamides (4) was synthesized and tested for their anticancer activity against a panel of 60 human cancer cell lines. Some of the representative compounds such as 4a, 4b, 4f, 4g, 4i and 4t were selected for the five dose study and amongst them 4g and 4i displayed significant anticancer activity with GI50 values ranging from 0.25 to 8.34 and 1.42 to 5.86 μM, respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. The most active compound in this series 4g also inhibited tubulin polymerization with IC50 value 1.93 μM superior to that of E7010. Moreover, assay to investigate the effect on caspase-9, Hoechst staining and DNA fragmentation analysis suggested that these compounds induced cell death by apoptosis. Docking experiments showed that they interact and bind efficiently with tubulin protein. Overall, the results demonstrate that N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamide scaffold possess anticancer property by inhibiting the tubulin polymerization.  相似文献   

5.
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.

Highlights

  • A novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.
  • Compound 12c showed significant antiproliferative activities against different cancer cell lines.
  • Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.
  • Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
  相似文献   

6.
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78?μM and 5.25?μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76?μM.  相似文献   

7.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

8.
A series of new pyrrol-2(3H)-ones 4a-f and pyridazin-3(2H)-ones 7a-f were synthesized and characterized using different spectroscopic tools. Some of the tested compounds revealed moderate activity against 60 cell lines. The E form of the pyrrolones 4 showed good cytotoxic activity than both the Z form and the corresponding open amide form. Furthermore, the in vitro cytotoxic activity against HepG2 and MCF-7 cell lines revealed that compounds (E)4b, 6f and 7f showed good cytotoxic activity against HepG2 with IC50 values of 11.47, 7.11 and 14.80 μM, respectively. Compounds (E)4b, 6f, 7d and 7f showed a pronounced inhibitory effect against cellular localization of tubulin. Flow cytometric analysis indicated that HepG2 cells treated with (E)4b showed a predominated growth arrest at the S-phase compared to that of G2/M-phase. Molecular modeling study using MOE® program indicated that most of the target compounds showed good binding of β-subunit of tubulin with the binding free energy (dG) values about −10 kcal/mole.  相似文献   

9.
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.  相似文献   

10.
11.
A series of fourteen N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug resistance. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site.  相似文献   

12.
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.  相似文献   

13.
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket.  相似文献   

14.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

15.
A series of terphenyl based 4-aza-2,3-didehydropodophyllotoxin conjugates (8ar) were synthesized by a straightforward one-step multicomponent synthesis that demonstrated anticancer activity against five human cancer cell lines (lung, colon, renal, prostate and cervical). All the tested compounds showed potent anticancer activity with IC50 values ranging from 0.87 to 16.59 μM. Among them compounds 8n and 8p showed significant anticancer activity in lung cancer cells with IC50 values 0.91 and 0.87 μM, respectively. Flow cytometric analysis revealed that these compounds induced cell cycle arrest in G2/M phase in A549 cell line leading to caspase-3 dependent apoptotic cell death. The tubulin polymerization assay and immunofluorescence analysis showed that these compounds effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Further, Hoechst staining, DNA fragmentation analysis also suggested that these compounds induced cell death by apoptosis. Overall, the current study demonstrated that the synthesis of terphenyl based 4-aza-2,3-didehydropodophyllotoxin conjugates as promising anticancer agents with G2/M cell cycle arrest and apoptotic-inducing activities via targeting tubulin.  相似文献   

16.
Many natural and synthetic substances are known to interfere with the dynamic assembly of tubulin, preventing the formation of microtubules. In our search for potent and selective antitumor agents, a novel series of 1-(3′,4′,5′-trimethoxybenzoyl)-5-amino-1,2,4-triazoles were synthesized. The compounds had different heterocycles, including thiophene, furan or the three isomeric pyridines, and they possessed a phenyl ring bearing electron-releasing or electron-withdrawing substituents at the 3-position of the 5-amino-1,2,4-triazole system. Most of the twenty-two tested compounds showed moderate to potent antiproliferative activities against a panel of solid tumor and leukemic cell lines, with four (5j, 5k, 5o and 5p) showing strong antiproliferative activity (IC50 < 1 μM) against selected cancer cells. Among them, several molecules preferentially inhibited the proliferation of leukemic cell lines, showing IC50 values 2-100-fold lower for Jurkat and RS4;11 cells than those for the three lines derived from solid tumors (HeLa, HT-29 and MCF-7 cells). Compound 5k strongly inhibited tubulin assembly, with an IC50 value of 0.66 μM, half that obtained in simultaneous experiments with CA-4 (IC50 = 1.3 μM).  相似文献   

17.
A series of new podophyllotoxin derivatives containing structural modifications at C-7, C-8, and C-9 were synthesized and evaluated for their cytotoxic activity against three human cancer cell lines. All the synthesized compounds showed significant growth inhibition with GI50 values in micromolar levels while some of the compounds were several times more potent against MCF-7 and HeLa cell lines than MIAPACA cell line. Three compounds (12a, 12d and 12e) emerged as potent compounds with broad spectrum of cytotoxic activity against all the tested cell lines with GI50 values in the range of 0.01–2.1 μM. These compounds induce microtubule depolymerization and arrests cells at the G2/M phase of the cell cycle. Moreover, compounds 12d and 12e disrupted microtubule network and accumulated tubulin in the soluble fraction in a similar manner to their parent podophyllotoxin scaffold. In addition, structure activity relationship studies within the series were also discussed. Molecular docking studies of these compounds into the colchicine-binding site of tubulin, revealed possible mode of inhibition by these compounds.  相似文献   

18.
α-Fluorinated chalcones were prepared and evaluated for their cell growth inhibitory properties against six human cancer cell lines. The most potent chalcone 4c demonstrated excellent selective toxicity against cancer cells versus normal human cells, with IC50 values at nanomolar concentration ranges against 5 cancer cell lines. A further study revealed that 4c could bind to the colchicine site of tubulin, disrupt the cell microtubule networks, and effectively inhibit tubulin polymerisation. Cellular-based mechanism studies elucidated that 4c arrested MGC-803 cell cycle at G2/M phase. In addition, 4c dose-dependently caused Caspase-induced apoptosis of MGC-803 cells through mitochondrial dysfunction. Notably, compound 4c was found to inhibit the HUVECs tube formation, migration, and invasion in vitro. Furthermore, our data suggested that treatment with 4c significantly reduced MGC-803 cells metastasis and proliferation in vitro. Overall, this work showed that chalcone hybrid 4c is a potent inhibitor of tubulin assembly with prominent anti-angiogenesis and anti-cancer properties.  相似文献   

19.
A series of 1-aryl-5-(4-arylpiperazine-1-carbonyl)-1H-tetrazols as microtubule destabilizers were designed, synthesised and evaluated for anticancer activity. Based on bioisosterism, we introduced the tetrazole moiety containing the hydrogen-bond acceptors as B-ring of XRP44X analogues. The key intermediates ethyl 1-aryl-1H-tetrazole-5-carboxylates 10 can be simply and efficiently prepared via a microwave-assisted continuous operation process. Among the compounds synthesised, compound 6–31 showed noteworthy potency against SGC-7901, A549 and HeLa cell lines. In mechanism studies, compound 6–31 inhibited tubulin polymerisation and disorganised microtubule in SGC-7901 cells by binding to tubulin. Moreover, compound 6–31 arrested SGC-7901cells in G2/M phase. This study provided a new perspective for development of antitumor agents that target tubulin.  相似文献   

20.
A series of oxime ester-derivatives were prepared by utilizing the schizandrin (1), a major compound isolated from Schisandra grandiflora, which is deployed in different traditional system of medicine. The in vitro antiproliferative activities of the synthesized compounds were assessed against a selected panel of human cancer cell lines (A549, RKO P3, DU145 and Hela) and normal cell (HEK293). Several of these derivatives were found more potent in comparison to parent compound, schizandrin (1). Particularly, 4a and 4b demonstrated potent activity against DU-145 and RKOP3 cell lines with IC50 values of 3.42 µM and 3.35 µM respectively. To characterize the molecular mechanisms involved in antitumoral activity, these two compounds, 4a and 4b were selected for further studies. Cell cycle analysis revealed that both the compounds were able to induce apoptosis and cell cycle arrest at G0/G1 phase. To know the extent of apoptosis in DU145 and RKOP3 cell lines, Annexin V-FITC were performed. Moreover, the tubulin polymerization assay indicated that 4a and 4b exhibits potent inhibitory effect on the tubulin assembly. Molecular docking studies and competitive binding assay also indicated that 4a and 4b effectively bind at the colchicine binding site of the tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号